TetrazineBox: A Structurally Transformative ToolBox

Qing-Hui Guo,[†] Jiawang Zhou,^{†,‡} Haochuan Mao,^{†,‡} Yunyan Qiu,[†] Minh T. Nguyen,[†] Yuanning Feng,[†] Jiaqi Liang,[†] Dengke Shen,[†] Penghao Li,[†] Zhichang Liu,[‡] Michael R. Wasielewski,^{†,‡} and J. Fraser Stoddart*,^{‡,‡},

[†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

[‡]Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

[¥]School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China

§Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China

*School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia *E-mail: stoddart@northwestern.edu

Supporting Information

Table of Contents

Section A. General Information	
Section B. Synthetic Protocols	3
Section C. X-Ray Crystallographic Characterization	8
Section D. Redox Chemistry and UV-Vis-NIR Spectra	11
Section E. Regulatable Binding Affinities	15
Section F. NMR Spectroscopy	21
Section G. References	34

Section A. General Information

All commercially available reagents were used as received. Anhydrous MeCN and CH₂Cl₂ were prepared by solvent drying system. 3,6-Di(4-pyridinyl)-1,2,4,5-tetrazine (1) was synthesized according to literature¹. Bis(cyclopentadienyl)cobalt(II) was purchased from Sigma-Aldrich. UV-Vis-NIR absorption spectra were collected on a Shimadzu UV-3600 spectrophotometer. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance 500 spectrometers, with working frequencies of 500 MHz for ¹H and 125 MHz for ¹³C nuclei, respectively. Chemical shifts were reported in ppm relative to the signals corresponding to the residual non-deuterated solvents (DMSO- d_6 : $\delta_H = 2.50$ and $\delta_C = 39.5$ ppm; CD₃CN: $\delta_H = 1.94$ and $\delta_C = 118.3$ ppm). Abbreviations are used in the description of NMR data as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet), coupling constant (J, Hz). EPR Spectra were recorded using a Bruker Elexsys E580 X-band EPR spectrometer. EPR Samples were prepared by titration with cobaltocene and the solution was transferred into 1.8 mm o.d. quartz tubes and sealed with a clear ridged UV doming epoxy in an Ar glovebox. High-resolution mass spectra (ESI-HRMS) were measured on a Finnigan LCQ iontrap mass spectrometer. Single-crystal X-ray diffraction (SCXRD) data were collected on a Bruker APEX-II CCD diffractometer.

Section B. Synthetic Protocols

1. Synthesis of 2.2PF6

Scheme S1. Synthesis of 2•2PF₆

2•2PF₆: A solution of 3,6-di(4-pyridinyl)-1,2,4,5-tetrazine **1** (118 mg, 0.5 mmol) and methyl iodide (710 mg, 5 mmol) in the mixture of dry CH₂Cl₂ (20 mL) and anhydrous MeCN (40 mL) was heated to 90 °C for 18 h. The resulting red precipitate was collected by filtration, and washed with CH₂Cl₂ (3 × 10 mL). The precipitate was then dissoved in anhydrous MeOH (200 mL) and the solution was filtered. A solution of NH₄PF₆ (2 g) in anhydrous MeOH (20 mL) was added in the filtrate. The resulting red precipitate was collected by filtration, washed with CH₂Cl₂ (3 × 20 mL) and dried to give the product **2•**2PF₆ (222 mg, 0.4 mmol) in 80% yield. ¹H NMR (500 MHz, CD₃CN, 298 K) δ_H = 9.16 (d, J = 6.17 Hz, 4H), 9.00 (d, J = 6.17 Hz, 4H), 4.49 (s, 4H); ¹³C NMR (125 MHz, CD₃SOCD₃, 298 K) δ_C = 161.8, 147.9, 145.9, 126.0, 125.6, 49.0; ESI-HRMS Calcd for C₁₄H₁₄F₆N₆P: m/z = 411.0916 [M + H]⁺; found: 411.0917 [M + H]⁺.

2. Synthesis of 3-2PF₆

Scheme S2. Synthesis of 3•2PF₆

3•2PF₆: A solution of α,α' -dibromo-p-xylene (13.20 g, 50 mmol) and 3,6-di(4pyridinyl)-1,2,4,5-tetrazine 1 (1.18 g, 5 mmol) in the mixture of dry CH₂Cl₂ (80 mL) and anhydrous MeCN (160 mL) was heated to 90 °C for 18 h. The resulting red precipitate was collected by filtration, washed with CH₂Cl₂ (3 × 20 mL). The precipitate was then dissoved in anhydrous MeOH (400 mL) and the solution was filtered. A solution of NH₄PF₆ (8 g) in anhydrous MeOH (50 mL) was added in the filtrate. The resulting red precipitate was collected by filtration, washed with CH₂Cl₂ (3 × 20 mL) and dried to give the product 3•2PF₆ (3.13 g, 3.5 mmol) in 70% yield. ¹H NMR (500 MHz, CD₃CN, 298 K) δ_H = 9.17 (d, J = 6.46 Hz, 4H), 9.10 (d, J = 6.46 Hz, 4H), 7.60 (d, J = 8.02 Hz, 4H), 7.55 (d, J = 8.02 Hz, 4H), 5.91 (s, 4H), 4.65 (s, 4H);¹³C NMR $(125 \text{ MHz}, \text{CD}_3\text{CN}, 298 \text{ K}) \delta_C = 162.3, 147.6, 146.8, 141.1, 133.0, 130.8, 130.5, 127.5,$ 65.1, 33.1; ESI-HRMS Calcd for $C_{28}H_{24}Br_2N_6F_{12}P_2$: $m/z = 749.0045 [M - PF_6]^+$; found: $749.0081 [M - PF_6]^+$.

3. Synthesis of 4•4PF₆

Scheme S3. Synthesis of 4•4PF₆

4•4PF₆: A template pyrene (1.51g, 6mmol) and a catalyst TBAI (111 mg, 0.3mmol) were added to a solution of 1 (894 g, 1 mmol) and 3•2PF₆ in anhydrous MeCN (500 mL). The mixture was heated to 80 °C for 18 h or stirred at room temperature for 7 days. The resulting red precipitate was collected by filtration, washed with CH₂Cl₂ (3 × 20 mL). The precipitate was then dissoved in anhydrous MeOH (800 mL) and the solution was filtered. A solution of NH₄PF₆ (2.5 g) in anhydrous MeOH (50 mL) was added to the filtrate. The resulting red precipitate was collected by filtration, washed with CH₂Cl₂ (3 × 20 mL) and dried. The analytically pure product 4•4PF₆ (391 mg, 0.31 mmol), which was obtained in 31% yield, was isolated as a red powder by highperformance reverse-phase preparative C18 column chromatography (anhydrous MeCN and 5% CH₂Cl₂ as eluent). ¹H NMR (500 MHz, CD₃CN, 298 K) δ_H = 8.93 (d, J = 7.00 Hz, 8H), 8.62 (d, J = 7.00 Hz, 8H), 7.67 (s, 8H), 7.67 (s, 8H); ¹³C NMR (125) MHz, CD₃CN, 298 K) δ_C = 154.8, 151.5, 145.4, 136.5, 130.9, 127.8, 126.8, 64.9, 22.8; ESI-HRMS Calcd for C₄₀H₃₂F₂₄N₁₂P₄: $m/z = 1115.1793 [M - PF₆]^+$, 485.1073 $[M - PF₆]^+$ $2PF_6]^{2+}$; found: 1115.1782 $[M - PF_6]^+$, 485.1077 $[M - 2PF_6]^{2+}$.

4. Synthesis of 5•4PF6

Scheme S4. Synthesis of 5•4PF₆

5•4PF₆: Excess of activated Zn powder was added to a solution of **4•**4PF₆ (10 mg, 0.008 mmol) in anhydrous MeCN (5 mL) in a N₂ glovebox. The mixture was stirred at room temperature for 5 min. The Zn powder was filtrered off and the resulting clear filtrate was allowed to stand in a 1-ml vial in a N₂ glovebox. On slow vapor diffusion of iPr₂O into the MeCN solution during one day, the pure product **5•**4PF₆ (8 mg, 0.0064 mmol) was afforded as red crystals in 80% yield. ¹H NMR (500 MHz, CD₃CN, 298 K) δ_H = 8.79 (d, J = 7.02 Hz, 4H), 8.55 (s, 8H), 8.15 (d, J = 7.02 Hz, 8H), 7.56 (s, 8H), 5.73 (s, 8H); ¹³C NMR (125 MHz, CD₃CN, 298 K) δ_C = 145.9, 145.4, 143.2, 135.7, 130.8, 125.5, 64.6.

5. Synthesis of 6•4PF6

Scheme S5. Synthesis of 6•4PF₆

6•4PF₆: Excess of activated Zn powder was added to a solution of **4•**4PF₆ (100 mg, 0.08 mmol) in anhydrous MeCN (25 mL) in a N₂ glovebox. The mixture was stirred at room temperature for 48 h. The Zn powder was filtrered off, the resulting clear filtrate

was subjected to SiO₂ column chromatography (0.25% NH₄PF₆ in MeCN as eluent). The pure product **6**•4PF₆ (86 mg, 0.068 mmol) was afforded as a red powder in 85% yield. ¹H NMR (500 MHz, CD₃CN, 298 K) δ_H = 8.75 (d, J = 6.48 Hz, 8H), 8.33 (d, J = 6.48 Hz, 8H), 7.59 (s, 8H), 6.34 (s, 8H), 5.66 (s, 8H); ¹³C NMR (125 MHz, CD₃CN, 298 K) δ_C = 152.0, 149.9, 144.3, 136.6, 130.7, 125.6, 64.7; ESI-HRMS Calcd for C₄₀H₃₂F₂₄N₁₂P₄: m/z = 1115.1793 [M – PF₆]⁺, 485.1073 [M – 2PF₆]²⁺; found: 1115.1782 [M – PF₆]⁺, 485.1077 [M – 2PF₆]²⁺.

6. Synthesis of 7-4PF₆

Scheme S6. Synthesis of 7•4PF₆

7•4PF₆: Excess of norbornadiene (147 mg, 1.6 mmol) was added to a solution of **4•**4PF₆ (100 mg, 0.08 mmol) in anhydrous MeCN (25 mL). The mixture was stirred at room temperature for 20 min while N₂ was released. The mixture was subjected to SiO₂ column chromatography (0.25% NH₄PF₆ in MeCN as eluent). The pure product **7•**4PF₆ (86 mg, 0.068 mmol) was afforded as a yellow powder in 97% yield. H NMR (500 MHz, CD₃CN, 298 K) δ_H = 8.90 (d, J = 6.92 Hz, 4H), 8.60 (d, J = 6.92 Hz, 8H), 8.44 (s, 4H), 7.63 (s, 8H), 5.77 (s, 8H); ¹³C NMR (125 MHz, CD₃CN, 298 K) δ_C = 154.8, 151.5, 145.4, 136.5, 130.9, 127.8, 126.8, 64.9.ESI-HRMS Calcd for C₄₄H₃₆F₂₄N₈P₄: m/z = 1111.1983 [M – PF₆]⁺; found: 1111.1994 [M – PF₆]⁺.

Section C. X-Ray Crystallographic Characterization

All the single crystals were obtained by slow vapor diffusion of iPr₂O into solutions of 2•2PF₆, 4•4PF₆, 5•4PF₆, 6•4PF₆, and 7•4PF₆ in MeCN after two days, respectively. Single crystals of host-guest complexes (pyrene⊂TzBox•4PF₆, perylene⊂TzBox•4PF₆, pyrene⊂DzBox•4PF₆, and perylene⊂DzBox•4PF₆) were obtained by slow vapor diffusion of iPr₂O into MeCN solutions containing 1:1 ratios of hosts to guests at room temperature. Single crystals suitable for X-ray crystallography were selected and mounted in an inert oil and transferred to the cold N₂ gas stream of a Bruker Kappa APEX CCD area detector diffractometer. The crystals were kept at 100 K during the data collection. Using Olex2², structures were resolved with the XT³ structure solution program employing Dual Space and refined with the XL⁴ refinement package using least squares minimization. All crystallographic data for the structures reported here have been deposited on to the Cambridge Crystallographic Data Centre (CCDC) downloaded free of and can be charge via www.ccdc.cam.ac.uk/data request/cif. The crystallographic information, structural parameters for 2•2PF₆, 4•4PF₆, 5•4PF₆, 6•4PF₆, 7•4PF₆, pyrene⊂TzBox•4PF₆, perylene⊂TzBox•4PF₆, pyrene⊂DzBox•4PF₆, and perylene⊂DzBox•4PF₆ are as follows.

2•2PF₆ Crystal Parameters. [C₁₄H₁₄F₁₂N₆P₂]. Triclinic, space group *P*-1, a = 7.8767(6), b = 9.0304(8), c = 14.5443(12) Å, $\alpha = 75.627(4)$, $\beta = 82.233(4)$, $\gamma = 82.011(4)^{\circ}$, V = 986.95(14) Å³, Z = 2, T = 100 (2) K, $\rho_{\text{calc}} = 1.872$ g cm⁻³. The final R_1 was 0.0277 and wR_2 was 0.0714 (all data). CCDC number 1972857.

4.4PF₆ Crystal Parameters. [C₅₄H₅₃F₂₄N₁₉P₄]. Monoclinic, space group $P12_1/c1$, a = 17.4620(7), b = 20.4049(7), c = 19.1126(7) Å, $\alpha = 90$, $\beta = 90.954(2)$, $\gamma = 90^{\circ}$, V = 6809.1(5) Å³, Z = 4, T = 100 (2) K, $\rho_{\text{calc}} = 1.510$ g cm⁻³. The final R_1 was 0.0628 and wR_2 was 0.1770 (all data). CCDC number 1972858.

5•4PF₆ Crystal Parameters. [$C_{26}H_{27}F_{12}N_9P_2$]. Triclinic, space group P-1, a = 10.3447(4),

b = 11.4860(4), c = 17.3882(6) Å, $\alpha = 104.290(2)$, $\beta = 94.193(2)$, $\gamma = 112.848(2)^\circ$, V = 1811.71(12) Å³, Z = 2, T = 100 (2) K, $\rho_{\text{calc}} = 1.385$ g cm⁻³. The final R_1 was 0.0516 and wR_2 was 0.1422 (all data). CCDC number 1972862.

6.4PF₆ Crystal Parameters. [C₄₀H₄₀F₁₈N₁₂P₃]. Monoclinic, space group C12/c1, a = 16.1323(5), b = 11.4829(4), c = 30.2137(9) Å, $\alpha = 90$, $\beta = 101.490(2)$, $\gamma = 90^{\circ}$, V = 5484.8(3) Å³, Z = 4, T = 100 (2) K, $\rho_{\text{calc}} = 1.361$ cm⁻³. The final R_1 was 0.0405 and wR_2 was 0.1091 (all data). CCDC number 1972863.

7•4PF₆ Crystal Parameters. [C₄₆H₃₉F₂₄N₉P₄]. Triclinic, space group P-1, a = 13.3898(4), b = 14.5809(4), c = 15.0625(4) Å, α = 106.7410(10), β = 99.5330(10), γ = 110.0920(10)°, V = 2527.68(12) Å³, Z = 2, T = 100 (2) K, ρ_{calc} = 1.705 g cm⁻³. The final R_1 was 0.0607 and wR_2 was 0.1704 (all data). CCDC number 1972859.

Pyrene \subset **TzBox**•4PF₆ Crystal Parameters. [C₆₄H₅₄F₂₄₆N₁₈P₄]. Triclinic, space group P-1, a = 10.8605(4), b = 13.1591(5), c = 13.4694(5) Å, $\alpha = 81.307(2)$, $\beta = 87.8564(18)$, $\gamma = 67.7952(17)^{\circ}$, V = 1761.33(12) Å³, Z = 1, T = 100(2) K, $\rho_{calc} = 1.534$ g cm⁻³. The final R_1 was 0.0644 and wR_2 was 0.1839 (all data). CCDC number 1972860.

Perylene \subset **TzBox**•4PF₆ Crystal Parameters. [C₆₈H₅₆F₂₄N₁₆P₄]. Triclinic, space group P-1, a = 10.8276(8), b = 13.2652(9), c = 13.6121(10) Å, $\alpha = 81.996(3)$, $\beta = 89.523(3)$, $\gamma = 67.586(3)$ °, V = 1787.7(2) Å³, Z = 1, T = 100(2) K, $\rho_{calc} = 1.558$ g cm⁻³. The final R_1 was 0.0507 and wR_2 was 0.1403 (all data). CCDC number 1972864.

Pyrene \subset **DzBox**•4PF₆ Crystal Parameters. [C₆₈H₅₈F₂₄N₁₂P₄]. Triclinic, space group P-1, a = 10.4268(5), b = 11.1641(5), c = 17.3653(8) Å, $\alpha = 74.541(3)$, $\beta = 80.014(3)$, $\gamma = 63.639(2)^{\circ}$, V = 1742.15(15) Å³, Z = 1, T = 100(2) K, $\rho_{\text{calc}} = 1.547$ g cm⁻³. The final R_1 was 0.0609 and wR_2 was 0.1699 (all data). CCDC number 1972861.

Perylene \subset **DzBox**•4PF₆ Crystal Parameters. [C₇₂H₆₀F₂₄N₁₂P₄]. Triclinic, space group *P*-1, a = 10.4662(5), b = 11.0351(5), c = 17.4251(8) Å, $\alpha = 74.1610(15)$, $\beta = 78.6350(15)$, $\gamma = 65.1600(10)^{\circ}$, V = 1749.15(14) Å³, Z = 1, T = 100(2) K, $\rho_{\text{calc}} = 1.5883$ g cm⁻³. The final R_1 was 0.0454 and wR_2 was 0.1191 (all data). CCDC number 1972865.

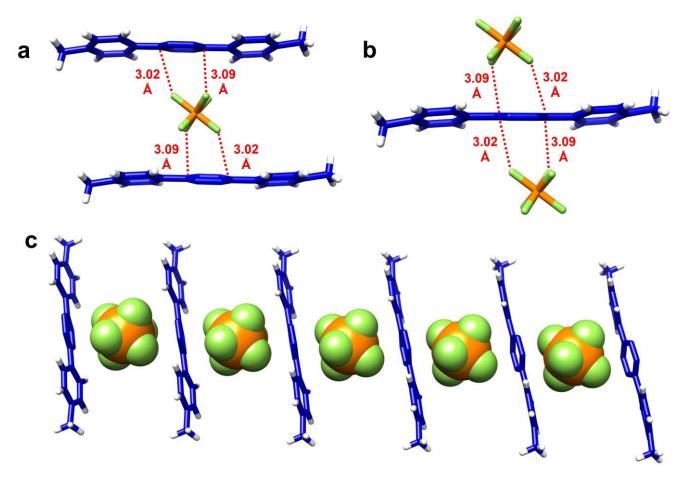
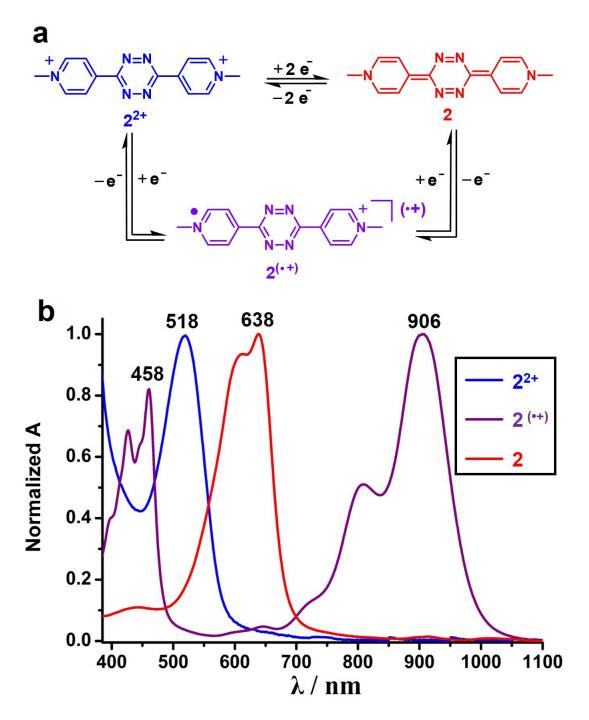
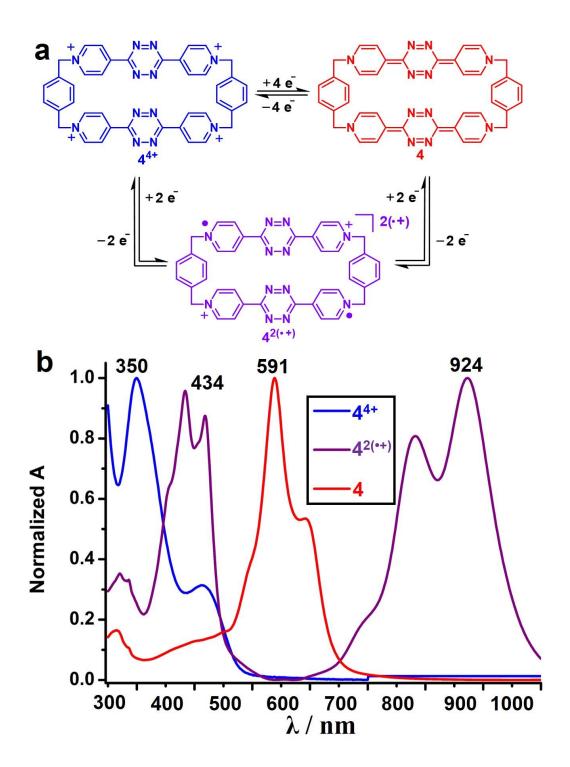




Figure S1. The multiple anion— π interactions between PF₆⁻ counterions and π electron-deficient $\mathbf{2}^{2+}$ fragments in the superstructures of $\mathbf{2} \cdot \mathbf{2}$ PF₆. (a) One PF₆⁻ counterion interacts with two $\mathbf{2}^{2+}$ fragments. (b) One $\mathbf{2}^{2+}$ fragment interacts with two PF₆⁻ counterions. (c) $\mathbf{2}^{2+}$ fragments and PF₆⁻ counterions assemble into a 1D superstructure.

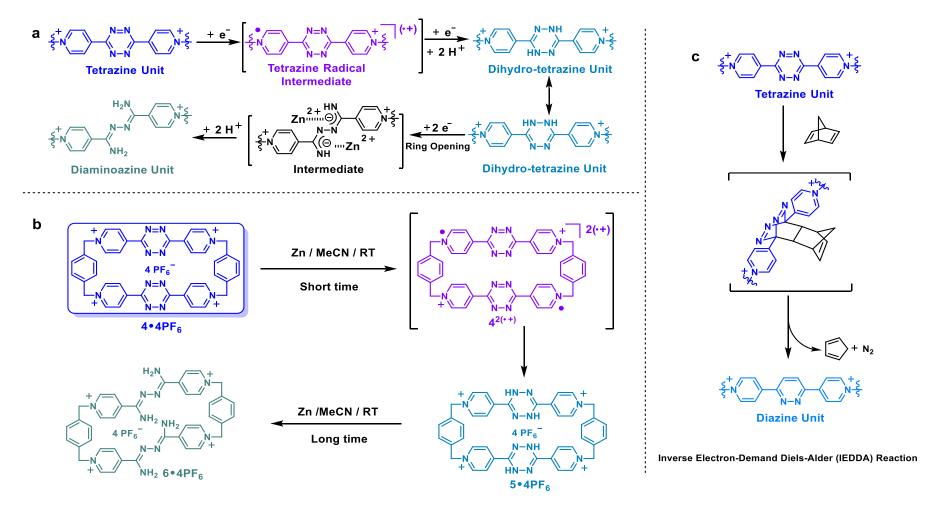
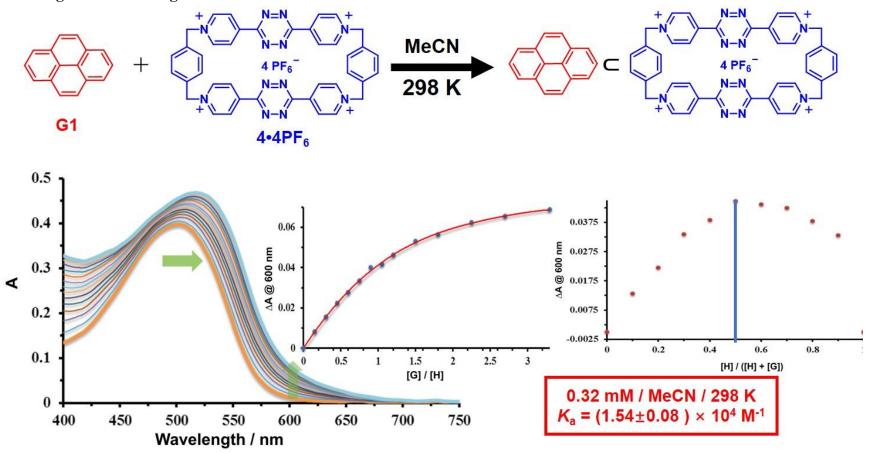

Section D. Redox Chemistry and UV-Vis-NIR Spectra

Figure S2. (a) Structural formulas of the three redox states of **2**•2PF₆. (b) Normalized UV–Vis–NIR absorption spectra of **2**^{2+/(•+)/0}, which were obtained by the stepwise addition of 0, 1.0, and 2.0 equiv of CoCp₂. All spectra were recorded in Ar-purged DMF solutions at 298 K.

Figure S3. (a) Structural formulas of the three redox states of **4**•4PF₆. (b) Normalized UV–Vis–NIR absorption spectra of **4**^{4+/2(•+)/0}, which were obtained by the stepwise addition of 0, 2.0, and 4.0 equiv of CoCp₂. All spectra were recorded in Ar-purged DMF solutions at 298 K.



Scheme S7. (a) The mechanism for the metal-mediated reduction, in which radical intermediates are involved. (b) Box-to-box transformation. (c) inverse electron-demand Diels-Alder (IEDDA) reaction.

Table S1. The Heights, Widths and Lengths of TzBox⁴⁺, DzBox⁴⁺, DHTzBox⁴⁺, and DAzBox⁴⁺.

	Height (Å)	Width (Å)	Length (Å)
TzBox ⁴⁺	4.53	7.29	14.15
DzBox ⁴⁺	4.33	6.99	14.49
DHTzBox ⁴⁺	4.03	9.31	13.77
DAzBox ⁴⁺	5.69	7.12	14.38

Section E. Regulatable Binding Affinities

Figure S4. UV=Vis absorption spectrum of **4**•4PF₆ titrated by **pyrene** in MeCN solution at room temperature. A charge-transfer (CT) band appears. Job plot experiments 1:1 stoichiometry. The binding constant K_a was calculated to be $(1.54 \pm 0.08) \times 10^4$ M⁻¹.

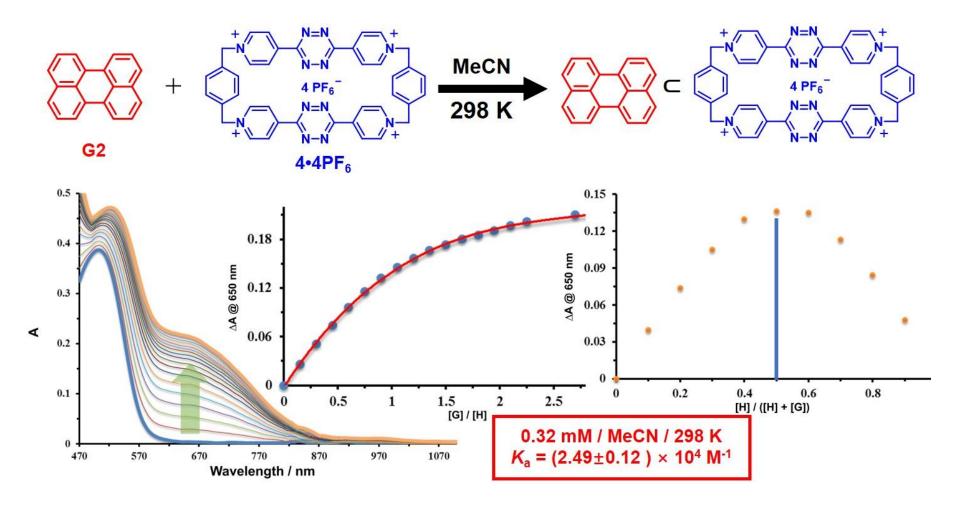


Figure S5. UV-Vis absorption spectrum of 4•4PF₆ titrated by **perylene** in MeCN solution at room temperature. A charge-transfer (CT) band at around 650 nm appears. Job plot experiments 1:1 stoichiometry. The binding constant K_a was calculated to be $(2.49 \pm 0.12) \times 10^4 \,\mathrm{M}^{-1}$.

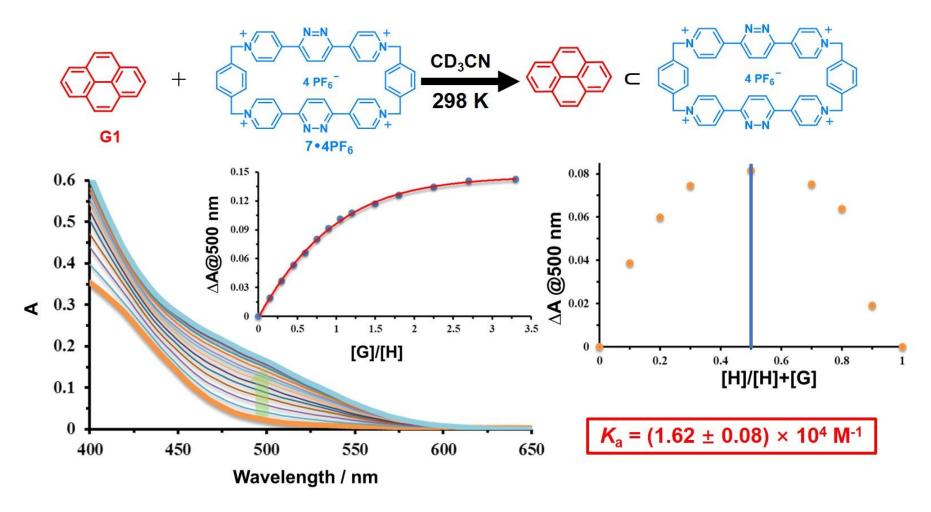


Figure S6. UV-Vis absorption spectrum of 4•4PF₆ titrated by **pyrene** in MeCN solution at room temperature. A charge-transfer (CT) band at around 500 nm appears. Job plot experiments 1:1 stoichiometry. The binding constant K_a was calculated to be $(1.62 \pm 0.08) \times 10^4 \,\mathrm{M}^{-1}$.

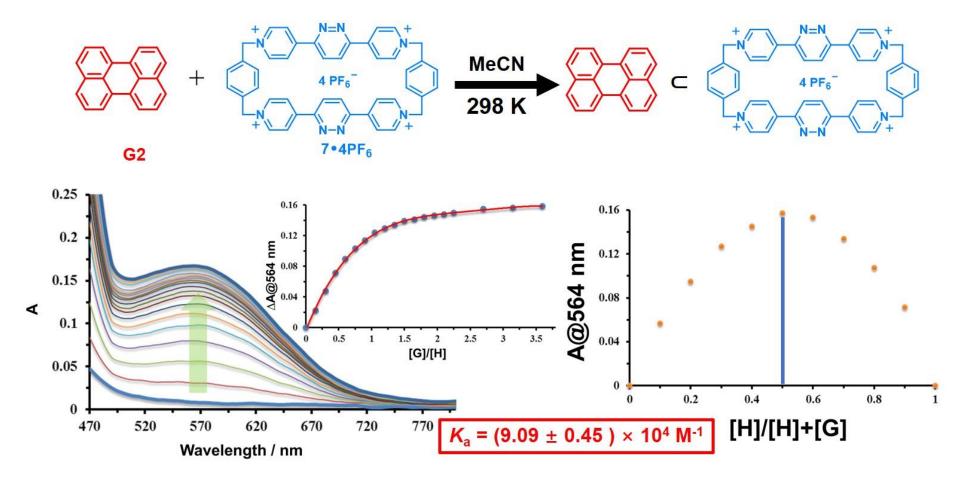
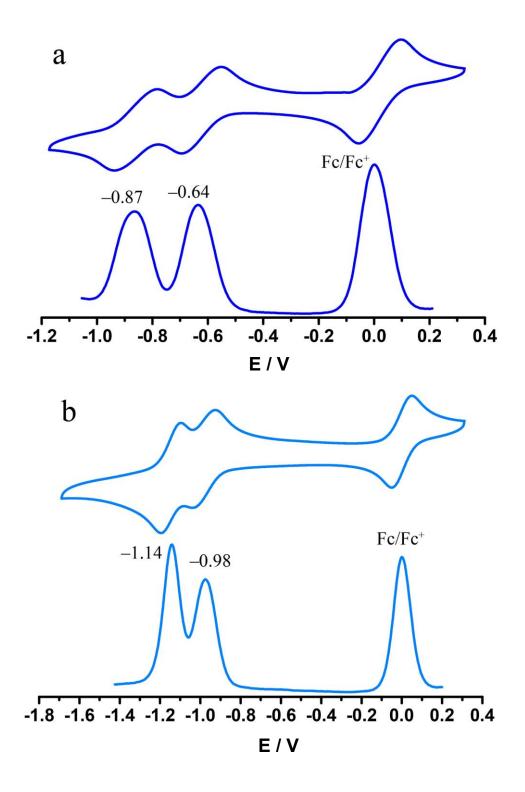
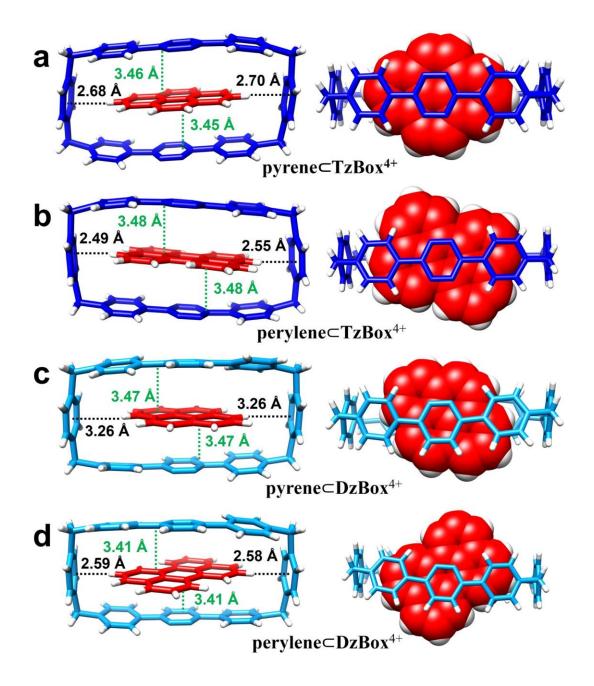
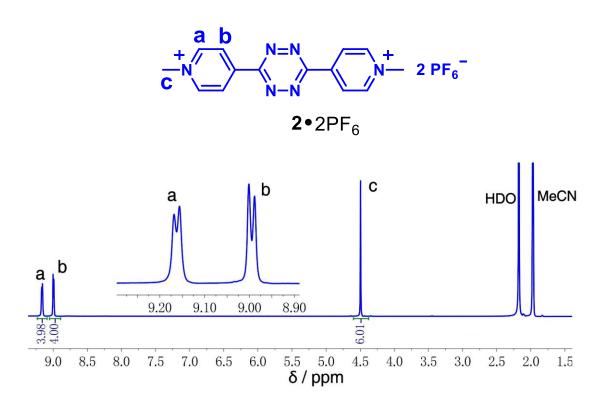
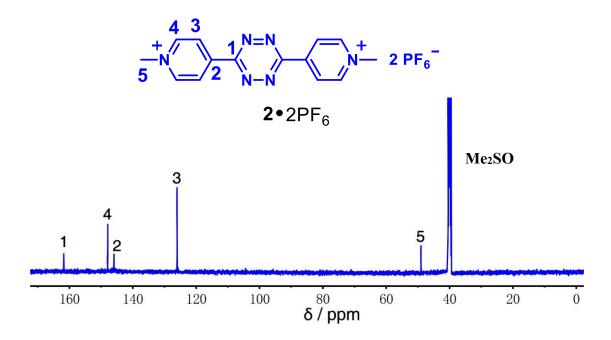
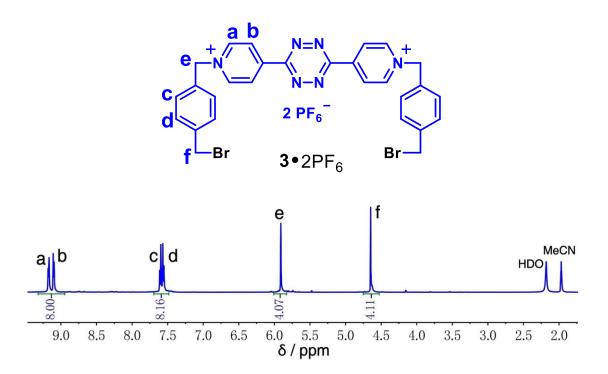



Figure S7. UV-Vis absorption spectrum of 7•4PF₆ titrated by **perylene** in MeCN solution at room temperature. A charge-transfer (CT) band at around 564 nm appears. Job plot experiments 1:1 stoichiometry. The binding constant K_a was calculated to be $(9.09 \pm 0.45) \times 10^4 \,\mathrm{M}^{-1}$.

Figure S8. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) of (a) **TzBox•**4PF₆ and (b) **DzBox•**4PF₆ with their reduction potentials highlighted.


Figure S9. Tubular and mixed tubular/space-filling representations single crystal superstructures of the 1:1 inclusion complexes formed by $[\pi \cdots \pi]$ interactions and $[C-H\cdots\pi]$ interactions. (a) The **pyrene** \subset **TzBox**⁴⁺ 1:1 inclusion complex. (b) The **perylene** \subset **TzBox**⁴⁺ 1:1 inclusion complex. (c) The **pyrene** \subset **DzBox**⁴⁺ 1:1 inclusion complex.

Section F. NMR Spectroscopy

Figure S10. ¹H (top) and ¹³C(bottom) NMR spectra of **2**•2PF₆.

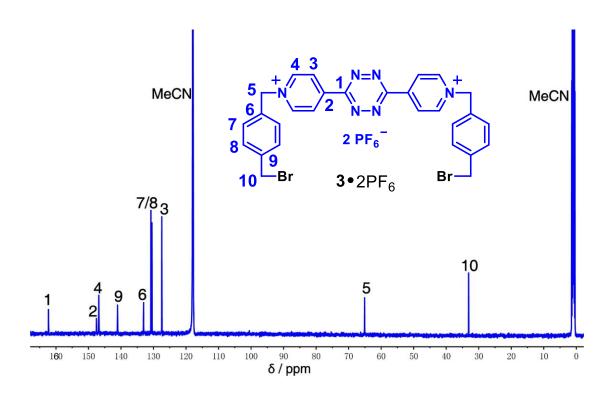
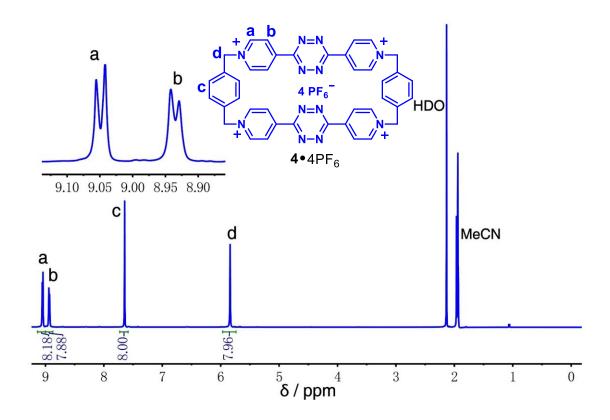
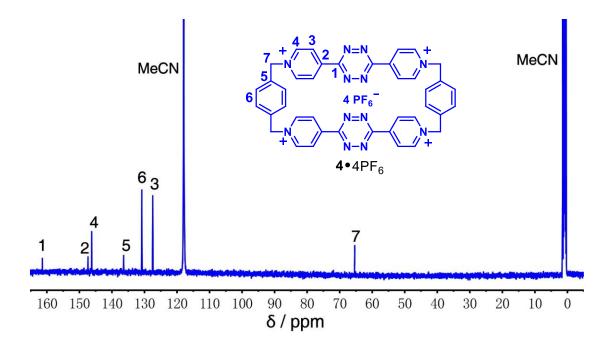
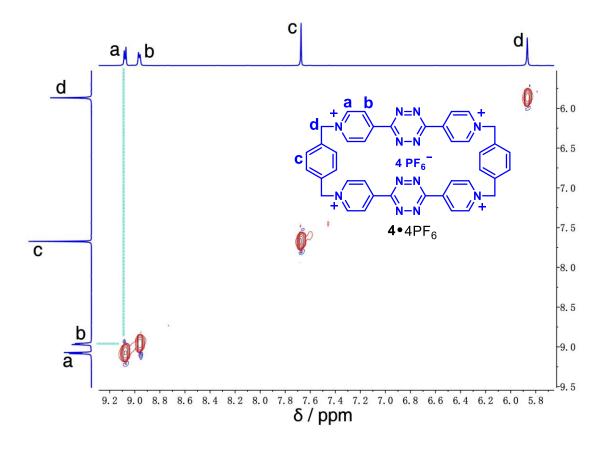





Figure S11. ¹H (top) and ¹³C(bottom) NMR spectra of 3•2PF₆.

Figure S12. ¹H (top) and ¹³C(bottom) NMR spectra of **4•**4PF₆.

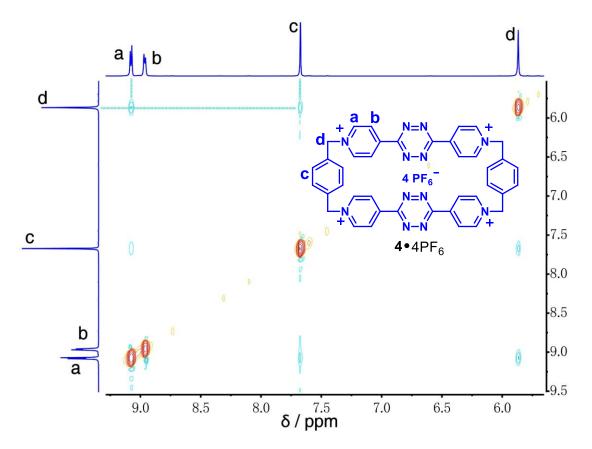
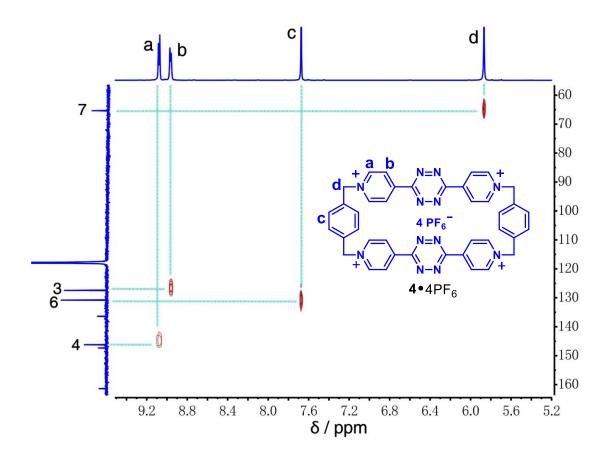



Figure S13. H-H COSY (top) and NOSY (bottom) NMR spectra of 4•4PF₆.

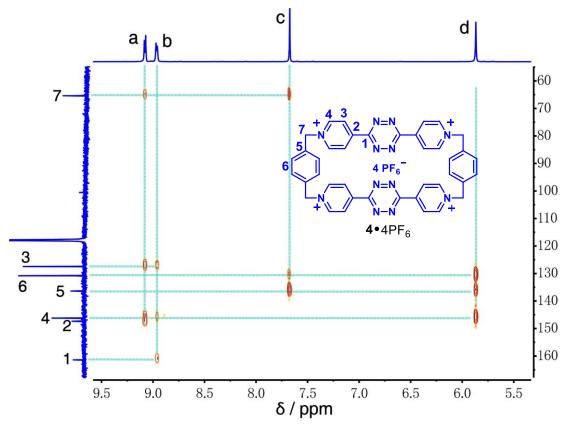
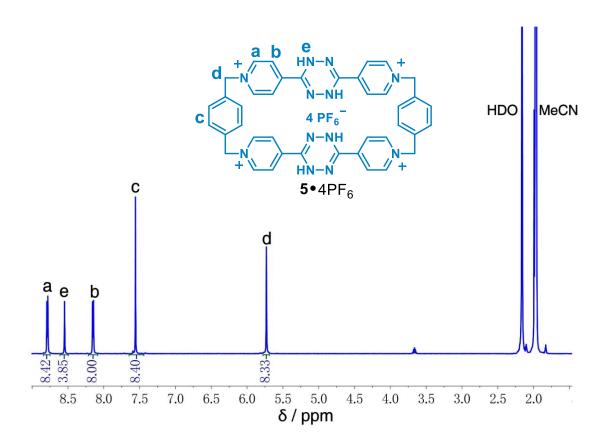
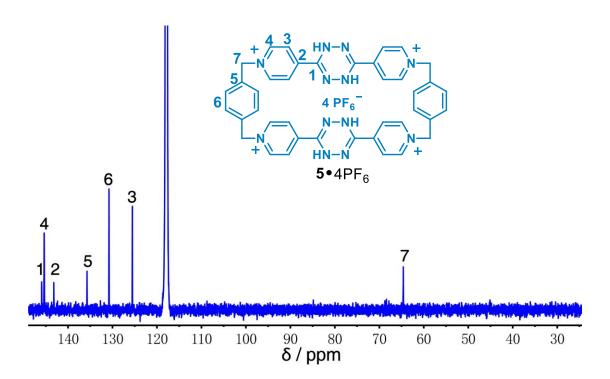




Figure S14. HSQC (top) and HMBC (bottom) NMR spectra of 4•4PF₆.

Figure S15. ¹H (top) and ¹³C(bottom) NMR spectra of **5•**4PF₆.

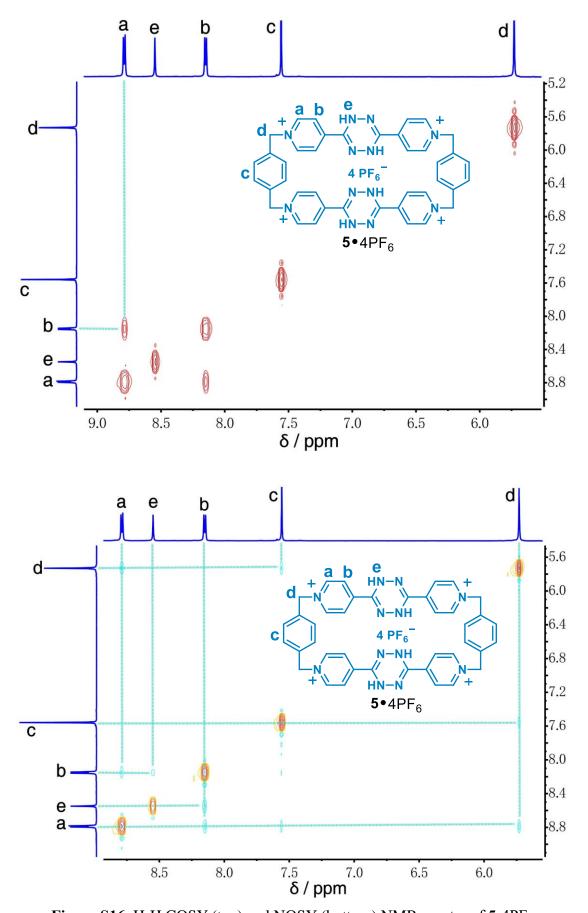


Figure S16. H-H COSY (top) and NOSY (bottom) NMR spectra of 5•4PF₆.

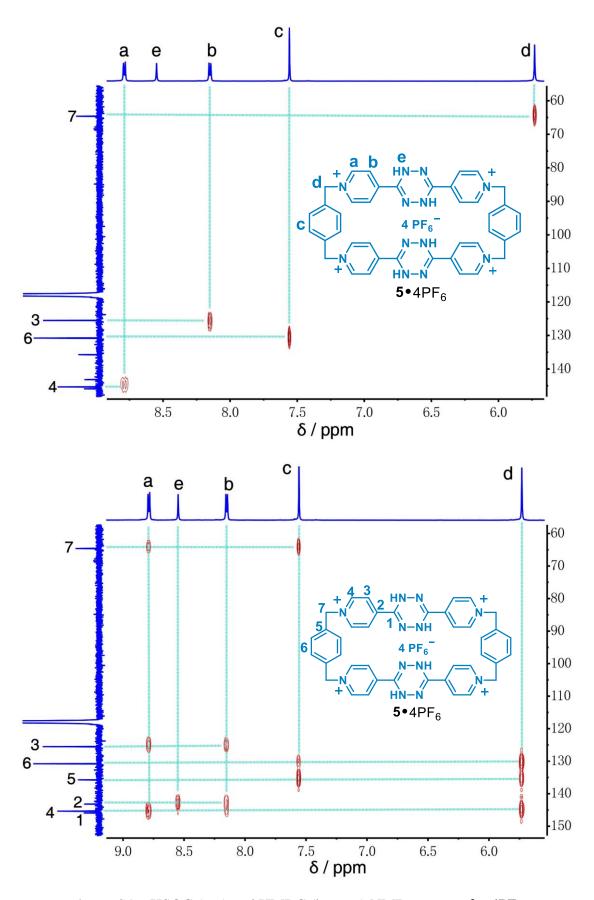
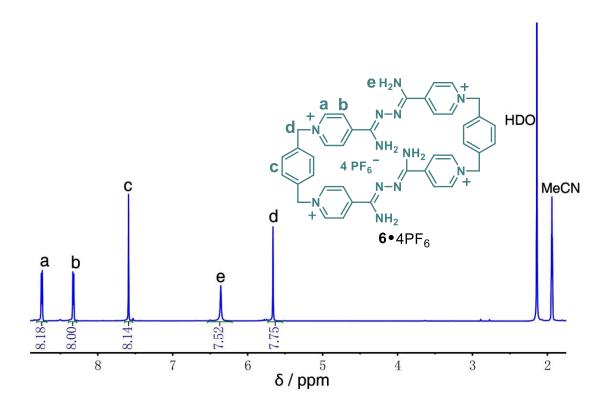



Figure S17. HSQC (top) and HMBC (bottom) NMR spectra of 5•4PF₆.

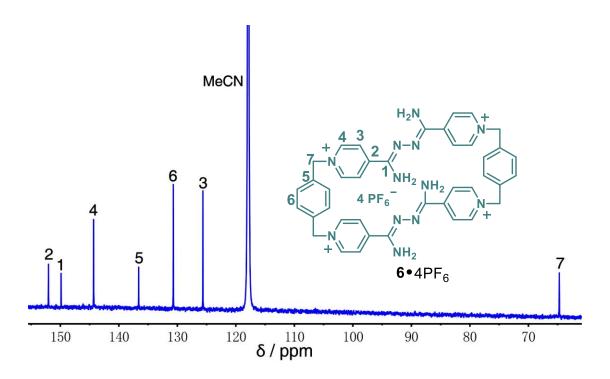


Figure S18. ¹H (top) and ¹³C(bottom) NMR spectra of 6•4PF₆.

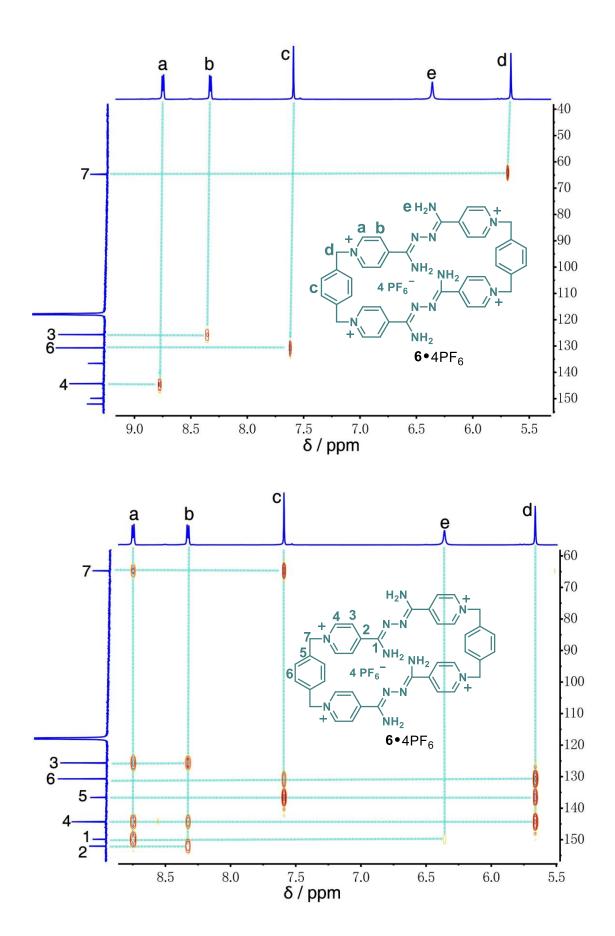
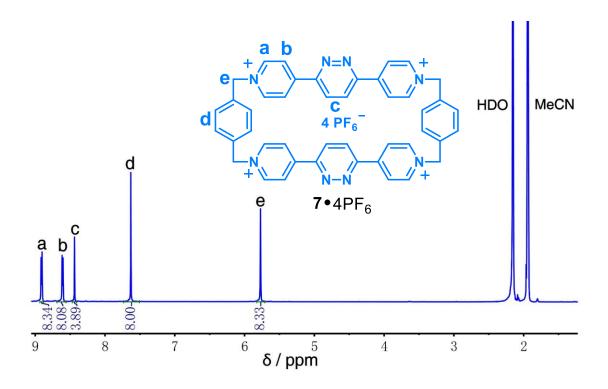
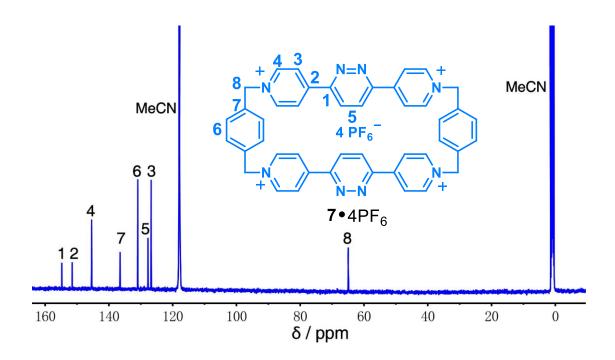




Figure S19. HSQC (top) and HMBC (bottom) NMR spectra of 6•4PF₆.

Figure S20. ¹H (top) and ¹³C(bottom) NMR spectra of **7•**4PF₆.

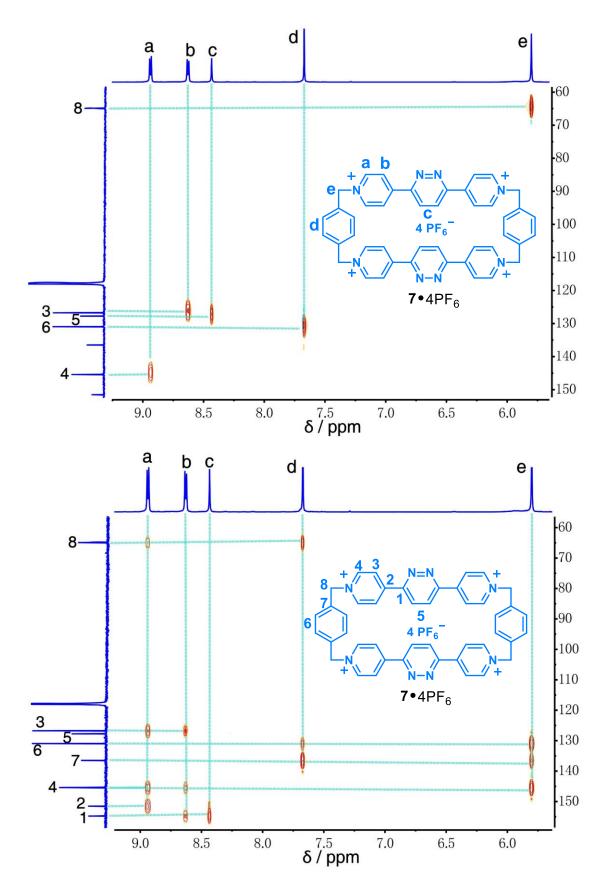
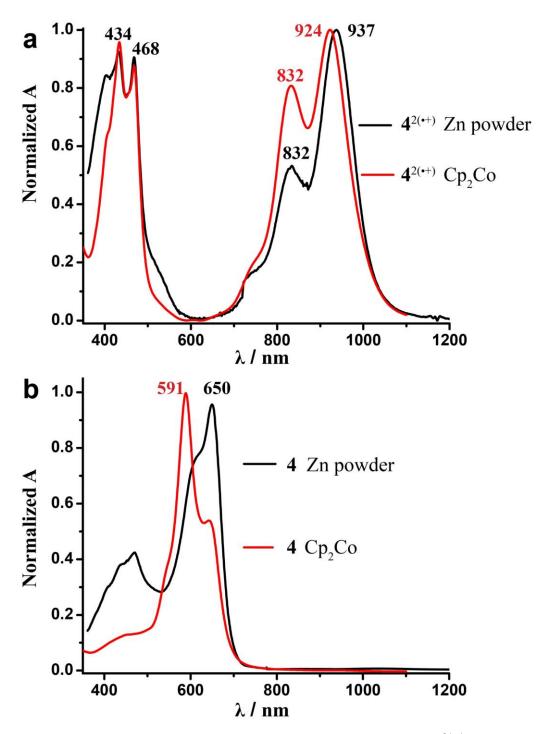



Figure S21. HSQC (top) and HMBC (bottom) NMR spectra of 7•4PF₆.

Figure S22. (a) Normalized UV–Vis–NIR absorption spectra of $4^{2(++)}$, which were obtained by addition of excess amounts (> 20 equiv) of Zn powder in an Ar-purged dry MeCN solution (black line) and 2.0 equiv of CoCp₂ in an Ar-purged dry DMF solution (red line). (b) Normalized UV–Vis–NIR absorption spectra of **4**, which were obtained by addition of excess amounts (> 20 equiv) of Zn powder (black line) and 4.0 equiv of CoCp₂ in Ar-purged DMF solutions (red line).

Section G. References

- S1. Y.-C. He *et al.*, Luminescent Anionic Metal-Organic Framework with Potential Nitrobenzene Sensing. *Cryst. Growth Des.* **2014**, *14*, 3174–3178.
- S2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* 2009, 42, 339–341.
- S3. G. Sheldrick, SHELXT-Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst.* **2015**, *71*, 3–8.
- S4. G. Sheldrick, A Short History of SHELX. Acta Cryst. 2008, 64, 112-122.