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Experimental section 
Synthesis and encapsulation of the magnetic nanostructures 
Magnetite (Fe3O4) NPs coated by silica (SiO2) were prepared as reported in our 
previous work.1 The sample characterization is shown in Fig. S1. 

Optical characterization 
Optical extinction was measured with a Cary 50 spectrophotometer from Varian. 
Luminescence in the optical trap was tested using a monochromator (Fluoromax 4, 
Horiba) and a photomultiplier tube (R928P, Hamamatsu). 

Optical trapping experiments 
The main experiments were carried out in a miniaturized single-beam optical tweezers 
with force calibrated by the photon linear momentum conservation method.2 The laser 
beam (wavelength, 𝜆 = 808 nm) was focused through a microscope objective 
(UPLASAPO 60X, water immersion, NA 1.2; Olympus) inside a microfluidics chamber 
(180 µm-thick) in under-filling conditions thus giving rise to a weakly focused Gaussian 
beam (numerical aperture of the beams, NAb ≈ 0.5). According to the paraxial 
Helmholtz approximation for a weakly focused Gaussian beam, the estimated beam 
waist was near experimental validations, 2𝑊! ≈103 nm, for setups with this optical 
design.1 The maximum measured power at the trap was 𝑃!"#$ ≈ 130 mW. The output 
beam was collected by means of an identical objective lens in order to monitor force 
measurements. Stokes’ law assays were performed by moving the microfluidic chamber 
at velocities 𝑣!"#$ < 100 µm·s−1, with simultaneous recording of the friction force, 
𝐹!"#$. The drag coefficient was obtained from linear fits to these experimental data, 
𝛾 = 𝐹!"#$ 𝑣!"#$. Control experiments were performed with polystyrene calibration 
beads (Polybead Polyscience, 1 µm-diameter) using a counter-propagating double-beam 
trap. Room temperature was measured with a thermocouple in the vicinity of the 
microfluidics chamber. 

Optical trapping stiffness characterization 
Trap stiffnesses transversal and axial to the beam’s propagating direction were 
measured and calculated as detailed in our previous work.1 Stiffness measurements 
confirmed good agreement with the theory. 

Nanostructure sample characterization 

We prepared nanoparticles (NPs), both iron oxide NPs (IONPs) and silica-coated iron 
oxide (IONP@SiO2) nanostructures, and performed rigorous optical trapping 
experiments to demonstrate all-optical confinement of the IONP@SiO2 nanostructures 
in a weakly focused beam, as detailed in a previous work.1 Here, we have used the same 
sample for coherence in the experimental procedure. In Fig. S1, we show again the 
transmission electron microscopy (TEM) characterization to provide a self-contained 
information. 



	 S3 

 
Figure S1. Top panels: TEM images of (a) IONPs and (b) IONP@SiO2 
nanostructures. Bottom panels, respective size histograms. Black curves are 
Gaussian fits. Mean diameter ± standard deviation values of 11 ± 1 and 99 ± 3 nm, 
for IONP cores and IONP@SiO2 nanostructures, respectively, were determined 
through manual analysis of ensembles of over 300 particles in randomly selected 
areas of the transmission electron micrographs. 

Luminescence of optically trapped silica-coated magnetic 
nanostructures 
After optical excitation, an IONP@SiO2 crystallite can release the absorbed energy both 
radiatively or non-radiatively. Broadband visible photoluminescence in magnetite 
nanocrystals has been reported under excitation at 407 nm.3 In our experimental 
conditions, two-photon absorption processes may take place if the absorption cross 
section of the trapped NP is sufficiently large.4-5  To investigate the occurrence of 
luminescent decay of our IONP@SiO2 nanostructure, we flowed them into the 
microfluidics chamber at concentrations hundreds of times higher than those used for 
the main experiments (see section 3.3. in the main text). These conditions favor the 
trapping of multiple NPs in short times. Then, we registered the emission from the trap 
at 660 nm using a photomultiplier tube. 

We collected the feasible emission light through the trapping objective and filtered it by 
means of a double-grating Czerny-Turner monochromator at 660 nm. We chose this 
wavelength to maximize the light transmission through the available optical elements. 
Despite the expected luminescent peak is centered at around 550 nm,3 it is sufficiently 
broad and holds a significant intensity at 660 nm. The emission was analyzed with a 
photomultiplier tube (R928P, Hamamatsu). As shown in Fig. S2, no appreciable peak or 
intensity rise is found after the laser was switched on. 
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Figure S2. Optical trap intensity output at 660 nm as a function of the time. Red 
dashed line marks the instant when the trapping laser was switched on. 

Since these experiments yielded negative results, we conclude that our sample presents 
negligible photoluminescence, both under one- and two-photon laser absorption, likely 
due to the presence of defects in the crystalline lattice. 

Behavior of a single nanostructure in the optical trap 
Single IONP@SiO2 nanostructures exhibited stationary behavior in the laser beam focal 
region, which optically confines them. The resulting trap can be considered a Hookean 
potential well within the spatial region stochastically explored by the nanostructure. 
This is demonstrated by the excellent fitting of the measured position fluctuations to the 
power spectral density (PSD) functional behavior of an overdamped particle in a 
harmonic field, Fig. S3 (a). 

The corner frequency, 𝑓! = 𝜅 2𝜋𝛾, increases with the optical power majorly because 
the optical trap becomes tighter (trap stiffness, 𝜅, increases), Fig. S3 (b). Due to optical 
heating from the IONP@SiO2 nanostructure, as analyzed in the main text, viscosity 
decreases with optical power in the trap, making friction coefficient, 𝛾, also decrease. 
As a result, the corner frequency also increases due heating effects. 

The temperature dependence of the water viscosity (in Pa·s) can be approached by the 
next expression:6 

log 𝜂!!! =
1.3272× 293.15− 𝑇 − 0.001053× 𝑇 − 293.15 !

𝑇 − 168.15 − 2.999      (S1) 

where ‘log’ is the logarithm with base 10 and 𝑇 the absolute temperature, such that 
𝑇 > 293.15 K. 

The microfluidics chamber was displaced with respect to the optical trap during Stokes’ 
law measurements (see Methods in the main text). For powers in the trap at or below 
𝑃!"#$ = 60 mW, velocities had to be limited above because drag forces made the 
specimen escape from the trap. In this regard, it interesting to note that optical trapping 
was achieved at powers as low as 30 mW but reliable Stokes’ law measurements were 
not possible in these conditions. 
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Figure S3. Thermal analysis of an individually trapped IONP@SiO2 nanostructure. 
(a) Black dots, power spectrum density of transversal position fluctuations of a 
single IONP@SiO2 trapped at a power 𝑃!"#$ = 120 mW. Grey dots, power 
spectrum density of the empty trap under the same conditions. The red curve is a 
Lorentzian fit with corner frequency 𝑓! = 535 ± 5 Hz, marked by a vertical black 
arrow. (b) Dependence of the measured 𝑓! with 𝑃!"#$. Black dots are mean ± SD 
over three representative nanostructures. The red line is a linear fit to the 
experimental data. 

Heat equation for silica-coated magnetic nanostructures 
Energy from light impinging an IONP@SiO2 nanostructure is dissipated as heat, as 
discussed above, and conducted thermally through the silica interface to the water 
surrounding the nanostructure, where it is spread in radial directions, 𝑟. The heat 
generation rate in stationary conditions equals the absorbed power (𝑞 = 𝑃!"#). The 
temperature increase around the magnetic core is estimated by solving Fourier’s law for 
heat conduction in a spherical symmetry: 

𝑑𝑇!
!!

!
= −

𝑃!"#
4𝜋𝐶 𝑟!!!𝑑𝑟!

!

!
,                                                (S2) 

where 𝑇 is the absolute temperature and 𝐶 is the thermal conductivity of the medium 
surrounding the heat source. In our system, Fig. S4, after applying 𝑇 𝑟 → ∞ = 𝑇! 
(room temperature) as a boundary condition and considering that only the magnetic core 
absorbs light, we find: 
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Δ𝑇 𝑟 = 𝑇 𝑟 − 𝑇! =

𝑃!"#
4𝜋𝐶!𝑟

  ,                                                                          𝑟 ≥ 𝑎   (S3a)

𝑃!"#
4𝜋𝐶!"𝑟

+
𝑃!"#
4𝜋𝑎

1
𝐶!

−
1
𝐶!"

 ,                            𝑎! ≤ 𝑟 ≤ 𝑎   (S3b)

𝑃!"#
8𝜋𝐶!

𝑎!! − 𝑟!

𝑎!!
+
𝑃!"#
4𝜋

1
𝐶!"𝑎!

+
1
𝑎

1
𝐶!

−
1
𝐶!"

 ,    𝑟 ≤ 𝑎!   (S3c)

 

where 𝑎! and 𝑎 are the radius of the IONP core and the IONP@SiO2 nanostructure, 
respectively; 𝐶!", 𝐶!  and 𝐶! are the thermal conductivities of silica, water and the 
magnetic core, respectively; and 𝑃!"# is the light power absorbed by the core. Equation 
(S3c) confirms that the temperature rise remains finite within the absorbing core. 

The temperature rise is linear with the absorbed power but not necessarily with the 
power in the trap. For motionless nanostructures (e.g. affixed on a solid surface), the 
absorbed power is constant with the spatial coordinates. In our situation, the 
nanostructure presents a Brownian motion due to the water molecule collisions and then 
the absorbed power depends on the position within the focal region, as studied below. 

 

Figure S4. Schematic of the IONP@SiO2 nanostructure (not to scale) consisting of 
a magnetic core (brown) and a SiO2 shell (grey) in water (blue). 𝑎! and 𝑎 are the 
radius of the magnetic core and silica shell, respectively; 𝐶!" and 𝐶! are the 
thermal conductivity of silica and water, respectively and 𝜎!"#, the absorption cross 
section of the whole nanostructure. 𝑟 is the radial distance from the center of the 
magnetic core. 

Power absorbed by an optically trapped nanostructure  
The use of a Gaussian beam theory to account for the focusing of the laser beam is 
accurate for weak focusing (numerical aperture of the beams, NAb ≈ 0.5, see Methods), 
as we previously demonstrated.1 The laser beam intensity, 𝐼 𝜌, 𝑧 , of a weakly focused 
laser beam is:7 

𝐼 𝜌, 𝑧 = 𝐼!"#
𝑊!

𝑊(𝑧)

!

exp −
2𝜌!

𝑊! 𝑧                                     (S4) 
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where 𝜌 is the polar radial coordinate in planes perpendicular to the beam’s propagating 
direction and 𝑧 the axial coordinate (i.e., along the optical axis) with origin at the focal 
region center (cylindrical symmetry), 𝑊 𝑧 =𝑊! 1+ 𝑧 𝑧! ! and 𝑊! = 𝜆𝑧! 𝑛𝜋 
are the beam width and waist radius, respectively, 𝑧! the Rayleigh range and 𝐼!"# the 
intensity at the center of the focal region (𝜌 = 𝑧 = 0). To deduce values for 𝑊! and 𝑧! 
from the measured beam’s numerical aperture (NA!  =  𝑛 sin𝜃!; 𝑛, the refractive 
index of water and 𝜃!, the beam’s divergence angle), we use 𝑊!  = 𝜆 (𝜋NA!) and 
𝑧!  =  𝜆𝑛 (𝜋(NA!)!), see Methods and Ref. 1. The power in the trap, 𝑃!"#$, is 
calculated as a surface integral at planes transversal to the Gaussian beam propagating 
direction: 

𝑃!"#$ = 𝐼 𝜌, 𝑧 𝑑𝑆 = 𝐼!"#
1
2𝜋𝑊!

!,                                        (S5) 

This result does not depend on the axial coordinate 𝑧.7  

Since the particle is smaller than the focal region, the power that it absorbs is position-
dependent. The position probability density (in inverse volume units), Prob 𝜌, 𝑧 , 
describes the spatial fluctuations of the particle; having in mind that the system is 
ergodic and that the dynamics of the particle is stationary, the ensemble can be modeled 
by the canonical distribution using only the elastic energies of the particle in the trap. In 
addition, for displacements near the equilibrium position, we can use a Hooke’s law. 
Then: 

Prob 𝜌, 𝑧 =
𝜅! 𝜅!

2𝜋𝑘!𝑇 !/! exp −
𝜅!𝜌! + 𝜅!𝑧!

2𝑘!𝑇
 ,                      (S6) 

being 𝜅! and 𝜅! the transversal and axial trap stiffnesses, respectively, and 𝑘!𝑇, the 
thermal energy (𝑘!, the Boltzmann constant). For a stationary dynamics, we used the 
average absorbed power instead, which we evaluate by integrating the local intensity 
received by the particle as it explores the focal volume: 

𝑃!"# = 𝜎!"# 𝐼 𝜌, 𝑧 Prob 𝜌, 𝑧 𝑑𝑆 𝑑𝑧 .                                   (S7) 

The volume element consists of the transversal surface element, 𝑑𝑆, and the line 
element along the optical axis, 𝑑𝑧. The absorbed power, which is a spatial average, can 
be considered a time-average magnitude since the system is stationary, and an 
ensemble-average magnitude over trapping experiments similarly prepared due to 
ergodicity. We analyze Eq. (S7) in three different regimes: 

(1) Weak confinement: the particle motion is not restricted within the focal volume. 
The integral in Eq. (S7) without approximation reads: 

𝑃!"# = 𝑃!"#$
𝜅! 2𝜅!𝜎!"#

𝜋!𝑘!𝑇
𝑑𝑧

exp − 𝜅!𝑧!
2𝑘!𝑇

𝜅!𝑊!! 1+ 𝑧 𝑧! ! + 4𝑘!𝑇

!!

!!
 ,                 (S8) 
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(2) Moderate confinement: 𝑧 ≪ 𝑧!. The particle fluctuates near the focal region center 
and, as a result, the absorbed power reduces to: 

𝑃!"# ≈
2
𝜋

𝜅!𝜎!"#
𝜅!𝑊!! + 4𝑘!𝑇

𝑃!"#$ .                                     (S9) 

(3) Strong confinement: 𝑧 ≪ 𝑧! and 𝜌! ≪𝑊! (where 𝜌!  is the mean square 
displacement of the particle in the transversal plane located at 𝑧 = 0). By using the 
Equipartition Theorem, 𝜅! 𝜌!  2 = 2 𝑘!𝑇 2, the second condition implies that 
𝜅!𝑊!

! ≫ 2𝑘!𝑇, that is, that the thermal energy level is very low compared to the 
trapping potential energy, and therefore 

𝑃!"# ≈ 𝜎!"#𝐼!"# =
𝜎!"#
!
!𝜋𝑊!

! 𝑃!"#$ ,                                     (S10) 

where we have used Eq. (S5). Certainly, for a tightly-trapped particle, Prob 𝜌, 𝑧 =
𝛿 𝜌 𝛿 𝑧 2𝜋𝜌 (Dirac delta distribution in cylindrical coordinates) and Eq. (S7) reduces 
to Eq. (S10). This expression is linear in the trap power and it is a good approximation 
for near-micron-sized particles or high-refractive index NPs. 

 
Figure S5. Power absorbed by a single magnetic nanostructure in an optical 
trap. Dependence of the absorbed power on the trapping power in the case of weak 
(Eq. (S8), black line), moderate (Eq. (S9), red line), and strong (Eq. (S10), blue 
line) confinement. The grey-shaded area represents the accessible trapping powers 
in our experimental conditions: below 𝑃!"#$ < 60 mW Stokes’ test on single 
IONP@SiO2 could not be performed, while 𝑃!"#$ at the diode laser limiting current 
was ~130 mW). Inset, detail at 𝑃!"#$ < 5 mW. Dots are calculations according to 
Eq. (S8), Eq. (S9) and Eq. (S10) while dashed curves are the best linear (strong 
confinement) and quadratic (moderate and weak confinement) fittings. 

By combining Eq. (2a) and Eq. (2b) in the main text with Eq. (S7), we find that Eq. (S8) 
is a valid approximation for our experimental configuration, being Eq. (S10) limited 
(Fig. S5). The Stokes’ test can be performed at a minimum power of 𝑃!"#$ = 60 mW 
without losing the trapped nanoparticle as a result of the viscous drag and the maximum 
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power allowed by the two laser diodes is 𝑃!"#$ = 130 mW. Within these limits, the 
nanostructure absorbs power from the laser beam following a linear trend. This fact 
indicates that, under our experimental conditions, optical power absorption is dominated 
by the trap irradiance. However, the effect of the motion of the nanostructure away from 
the laser focus center is patent at 𝑃!"#$ <  5 mW. 

The increase in temperature around an IONP@SiO2 nanostructure is represented in Fig. 
S6 at four different laser powers. We used 𝐶! = 0.60 W·K−1·m−1 and 𝐶!" = 0.95 
W·K−1·m−1, which is a reasonable value for porous silica.6, 8 

 
Figure S6. Theoretical temperature increment profile around a single 
magnetic nanostructure. The curves show results from Eq. (S3) combined with 
Eq. (S8) at four different trapping powers and in water. Vertical dashed lines mark 
core/shell and shell/water interface limits. The temperature increment has not been 
defined inside the magnetic core. 

Relation between the power in the trap and the power absorbed by a 
nanostructure 
To understand the non-linear relation between the power in the trap and the power 
absorbed by the nanostructure, we study the axial and transversal stiffnesses for a NP 
trapped in a weakly focused beam, as approximated considering 𝑧 ≪ 𝑧!, 𝜌 ≪𝑊! (see 
Ref. 1 and the previous section in this document) in SI units: 

𝜅! = ℜ𝑒 𝛼
𝐼!
𝑊!!

  ,                                                           (S11) 

𝜅! = ℜ𝑒 𝛼
1
2  
𝐼!
𝑧!!

 ,                                                          (S12) 

where 𝛼 is the complex polarizability of the IONP@SiO2 nanostructure, 𝐼! = 𝐸! ! the 
square modulus of the electric field, 𝑊! the waist radius and 𝑧! the Rayleigh range.7 
Following Eq. (S5),7 the power in the trap is: 
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𝑃!"#$ = 𝐼!"#
1
2𝜋𝑊!

! =
𝑐𝑛
16 𝐼!𝑊!

! 4𝜋𝜀!  ,                                   (S13) 

where 𝐼!"# has been expressed in terms of fundamental parameters in SI units, namely, 
𝐼!"# = 𝐼!𝑐𝑛𝜀! 2, with 𝑐 the vacuum light speed, 𝜀! the vacuum permittivity and 𝑛 the 
refractive index of the surrounding medium.1 

Then, it is possible to express the transversal and axial spring constants as linear 
functions of the power in the trap: 

𝜅! =
4ℜ𝑒 𝛼
𝑐𝑛𝜀!𝜋𝑊!!

𝑃!"#$ ,                                                    (S14) 

𝜅! =
2ℜ𝑒 𝛼

𝑐𝑛𝜀!𝜋𝑊!!𝑧!!
𝑃!"#$  .                                               (S15) 

Indeed, 𝜅! = 𝜉𝑃!"#$, with 𝜉 = 4ℜ𝑒 𝛼 𝑐𝑛𝜀!𝜋𝑊!
!, and 𝜅! = 𝜁𝑃!"#$, with 𝜁 =

2ℜ𝑒 𝛼 𝑐𝑛𝜀!𝜋𝑊!
!𝑧!!. 

A representation of the theoretical relationship between 𝑃!"# and 𝑃!"#$ is shown in Fig. 
S5, where we have used the numerical integration of Eq. (S8) together with Eqs. (S9) 
and (S10). In the strong confinement regime, Eq. (S10), 𝐵 ≡ Δ𝑇 𝑟 = 𝑅 𝑃!"#$ is a 
constant. In the weak and moderate confinement regimes (small particle in a weakly 
focused beam, Eqs. (S8) and (S9), respectively), there is also a contribution from the 
trapping stiffnesses, which increase with 𝑃!"#$, as approached by Eqs. (S14) and (S15). 
Indeed, by expressing, 𝜅! = 𝜉𝑃!"#$ (with 𝜉, a real, positive constant), in Eq. (S9), we 
obtain the next approximation for the moderate confinement regime: 

𝑃!"# ≈
2
𝜋

𝜉𝜎!"#
𝜉𝑊!!𝑃!"#$ + 4𝑘!𝑇

𝑃!"#$!  ,                                     (S16) 

which squares with the power in the trap in the limit of low laser power (𝑃!"#$ < 20 
mW in our experimental conditions). However, as observed in Fig. S5, it follows a 
linear trend within the range of accessible trapping powers in our assays and therefore, 
we can apply Eq. (4) in the main text to our data. 

Within the moderate confinement regime, the functional relationship between 𝐵 and 
𝑃!"#$ is (see Eq. (S16)): 

𝐵 ≡
ΔT
𝑃!"#$

∝
𝜉𝜎!"#

𝜉𝑊!!𝑃!"#$ + 4𝑘!𝑇
𝑃!"#$ =

𝑐𝑃!"#$
𝑑𝑃!"#$ + 𝑓

 ,                        (S17) 

where 𝑐,𝑑, 𝑓 > 0 are parameters. For our setup and sample particle conditions, it 
happens that 𝑐 ≪ 𝑓 ≪ 𝑑 and therefore, 𝐵 can be satisfactorily approximated by a 
constant within the applied laser power range (𝑃!"#$ → ∞ ⇒ 𝐵~ 𝑐 𝑑). For low power 
in the trap, however, 𝑃!"#$ → 0 ⇒  𝐵~ 𝑐𝑃!"#$ 𝑓; the heat coefficient becomes a linear 
function of the power in the trap, 𝐵 𝑃!"#$ = 𝑏×𝑃!"#$, and the temperature rise a 
quadratic function of the power in the trap, ΔT = 𝑏×𝑃!"#$! . 
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Hydrodynamic diameter and laser heating factor of optically trapped 
nanostructures: Raw data 
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136.6 6.0 98.9 23.8  177.4 6.8 56.8 20.5  286.0 22.2 436.5 60.4 

138.9 5.4 147.8 22.0  180.2 11.2 188.4 37.2  

PS
-B

ea
ds

 

1054.8 18.5 2.1 5.8 

139.0 8.1 52.8 28.5  180.4 9.7 270.7 35.9  1064.0 7.2 2.0 2.1 

140.6 3.6 112.9 13.8  184.2 8.2 82.7 22.3  1012.4 5.6 4.1 1.6 

141.7 5.0 40.5 16.4  184.2 3.2 198.7 11.0  1047.1 5.2 5.3 1.6 

142.7 4.1 119.6 15.4  185.6 15.8 173.0 48.8  1074.1 9.6 5.3 2.9 

143.4 4.5 72.4 16.5  185.9 12.5 275.8 44.5  1021.3 7.4 4.0 2.3 

144.7 4.9 97.5 17.8  187.6 13.0 179.5 39.7      

 

Temperature rise due to water absorption 

For small NPs, it is a good approximation to consider the temperature rise within the 
focal region due to water absorption as an independent effect, which adds to the 
temperature rise produced by the NP. The heating coefficient due to plain light 
absorption by water within the focal region, 𝐵!!" ≡ Δ𝑇! 𝑃!"#$, is:9-10 
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𝐵!!" 𝑟 = 𝐵!!"# 𝑊! 1+
1

2ln 𝐷 2𝑊!
1−

𝑟!

𝑊!!
,      0 ≤ 𝑟 ≤𝑊!        (S17) 

being ‘ln’ the natural logarithm and 

𝐵!!"# 𝑟 =
𝛼!
2𝜋𝐶!

 ln
𝐷
2𝑟 ,                    𝑊! ≤ 𝑟 ≤ 𝐷/2     (S18) 

the heating coefficient outside the focal region, which is evaluated at the limiting 
surface, 𝐵!!"# 𝑟 =𝑊! , in Eq. (S17). Parameters in our experiments are: 𝛼! ≈ 1.95 
m−1, the absorption coefficient of water at 𝜆!"#$ = 808 nm;11 𝐷 ≈ 180 µm, the distance 
between the walls of the microfluidic chamber and 𝑊! ≈ 0.5 µm (Methods). Then, the 
laser-induced heating coefficients of water comply with 𝐵!!",𝐵!!"# < 3 K·W−1 and the 
temperature rise inside or outside the focal region keeps Δ𝑇! < 0.3 K at 𝑃!"#$ = 100 
mW. 
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