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Omega Scan of ITO (400) peak of the top ITO layer for different trilayer structures 
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Figure S1(a) The rocking curve of top ITO (400) peak of samples with different top layer thickness 

(b) the FWHM of the ITO (400) rocking curve as a function of top layer film thicknesses. 
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Figure S1(a) shows the XRD omega scan of the ITO (400) peak observed in different trilayer 

samples with various top layer thickness. Figure S1(b) displays the full-width half-maximum 

(FWHM) of the rocking curve as a function of top ITO thickness. In general, the FWHM of the 

rocking curves of all samples were over 14o, and this indicated that all the top ITO film samples 

were having low crystallinity. It is noticed that the crystallinity of the top layer was improved with 

increasing top layer thickness, as indicated by the decrease of FWHM of ITO (400) peak with 

increasing thickness. This also indicated that the average grain size of the top ITO layer became 

larger as the layer thickness increased. Therefore, we believed that the improvement in electrical 

properties such as increment in carrier mobility was arisen from the large grain size and thus less 

grain boundaries, resulting in reduction of grain boundary scattering. 

 

XRR measurement of Set B samples 

Figure S2 shows the XRR measurement and the corresponding fitting results. From the graph, 

we estimated the individual layer thickness of the trilayer thickness. From the measurements, we 

confirmed that the trilayer structure with asymmetric geometry was successfully fabricated as the 

position of the gold insertion layer being shifted upward or downward within the ITO sandwich 

structure i.e. this asymmetric geometry was achieved by controlling the top and bottom ITO film 

thickness using different deposition time. This set of sample was based on the S3 sample (ITOt (20 

nm)/Au (3 nm)/ITOb (20 nm) symmetric geometry) through shifting the Au layer upward and 

downward 10 nm and 15nm with respect to the center of the ITO sandwich. 
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Figure S2 XRR pattern of ITO (40-t nm)/Au (2.9 nm)/ITO (t nm) asymmetric trilayer structures. 

Permittivity profile of the gold layer 

Figure S3 shows the permittivity profile of the gold thin film which was obtained from the build-

in profile of the ellipsometer. The permittivity is assumed to be constant among all samples for 

calculation. Indeed, from the TEM microscopy, all the gold layers in our trilayer structures were 

continuous and uniform.    
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Figure S3 The permitivity profile of gold thin film. 

 

Transmittance spectra of the trilayer structure 

To verify the validity of the ellipsometry data, a simulation calculation based on the transfer 

matrix method was used to calculate the transmittance spectra of the multilayer structures.  The 

transfer matrix method (TMM) described by Stenzel 1 was employed to calculate the transmittance 

and reflectance of the multilayer thin films based on the complex refractive index and film 

thickness. Since the light source of UV-Vis spectrometry was incident normally on the sample. 

The transmitting s/p polarization of the light would be the same. In our calculation, only the s-

polarized mode was considered. The algorithm is listed in the following equations, and the 

complex matrix multiplication was done by Microsoft Excel.  

The initial parameters were refractive index n and extinction coefficient k which were obtained 

by our ellipsometry measurements. The schematic diagram showing the effective medium 
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approximation (EMA) described in the paper is shown in Figure S4. The complex refractive index 

is given by equation (3). 

𝑛 = √
|𝜀⊥̃| + 𝜀⊥̃,𝑟

2
  (1) 

𝜅 = √
|𝜀⊥̃| − 𝜀⊥̃,𝑟

2
  (2) 

𝑛̃ = 𝑛 + 𝑖𝜅  (3) 

 

The transfer matrix by one-layer thin film is given: 

 𝑀 = (
cos(𝑘𝑜𝑛̃𝑑 cos 𝜓)

−𝑖

𝑛̃cos 𝜓
sin(𝑘𝑜𝑛̃𝑑 cos 𝜓)

−𝑖𝑛̃cos 𝜓 sin(𝑘𝑜𝑛̃𝑑 cos 𝜓) cos(𝑘𝑜𝑛̃𝑑 cos 𝜓)

)  (4) 

 𝑀𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 = ∏ 𝑀𝑗(𝑛𝑗 , 𝑑𝑗)

𝑁

𝑗=1

  (5) 

 

where 𝑘𝑜 is the wave vector of incident light and 𝜓 is the angle between the normal of film and 

propagation vector. It was taken 𝜓 = 0  for normal incident wave. 𝑛̃  and  𝑑  are the complex 

refractive index and the thickness of film. The overall transfer matrix for n layers thin film is the 

product of transfer matrix of each layers. The transmission coefficient t can be calculated by the 

matrix element of transfer matrix 

 t =
2

(𝑚11 + 𝑚12𝑛𝑠) + 𝑚21 + 𝑚22𝑛𝑠
  (6) 

where m11, m12, m21 and m22 are the matrix elements of the overall transfer matrix M. The 

overall transmittance of the light across n layers thin films is given by: 
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 T =
𝑛𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑛𝑎𝑖𝑟

|𝑡|2  (7) 

 

 

Figure S4 Schematic diagram of TMM modeling trilayer structure by effective media 

approximation (EMA). 
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Figure S5 The effective refractive index and extinction coefficient of trilayer structure using 

effective media approximation. 
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Figure S6 Camparision of the simulated transmittance using EMA and measured transmittance of 

trilayer structure with different ITO top and bottom thickness. 

In this part, the transmittance of the multilayer structure was calculated directly by the data 

retrieved form the ellipsometry measurement without using the EMA.  

 

Figure S7 schamatic diagram of TMM modeling trilayer structure by direct calculation 
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Figure S8 (a) simulated transmittance calculated by the refractive index of individual layer and (b) 

measured spectral transmittance data of the trilayer samples. 

Similar to the spectra calculated by the effective medium approximation, the simulation can 

model the transmittance with the from NIR to visible range including the transmittance response 

in the transition.    
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