Supporting Information:

Unusual Li-ion Intercalation Activation With Progressive Capacity Increase in Orthosilicate Nanocomposite Cathode

Majid Rasool^a, Hsien-Chieh Chiu^a, Raynald Gauvin^a, De-Tong Jiang^{b, c}, Jigang Zhou^c, Dominic Ryan^d, Karim Zaghib^e, and George P. Demopoulos^{*^a}

- a. Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- b. Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- c. Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
- d. Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8, Canada
- e. Centre d'excellence-ETSE, Hydro-Québec, Varennes, QC, Canada

*Corresponding author: Phone: 514-398-2046; Fax: 514-398-4492; **ORCID** #0000-0001-8112-5339; Email: george.demopoulos@mcgill.ca

Figure S1: XRD pattern of as-prepared Li₂FeSiO₄ sample obtained with synchrotron source ($\lambda = 0.7523$ Å) and refined with *Pmn2*₁ space group (R_{wp} = 4.60, R_p = 3.51 and GOF = 2.95) using TOPAS software. Lattice parameters obtained from fitting are a = 6.2691995 (Å), b = 5.3429072 (Å) and c = 4.956382 (Å). The '*' indicate the presence of minor iron oxide impurities (Fe₂O₃, Fe₃O₄ and Fe(OH)₃). By comparing the relative peak areas, the iron oxides were estimated to amount to about ~5% of the LFs material.

Figure S2: SEM images of as-prepared Li_2FeSiO_4 by hydrothermal synthesis at 200°C at different resolutions.

Figure S3: Nitrogen adsorption-desorption isotherm plot of LFS@C nanocomposite sample after mechanochemical treatment in the presence of carbon.

Figure S4: (a) HRTEM of LFS@C nanocomposite and its corresponding (b) fast Fourier transform (FFT) obtained using Image J software, respectively.

Figure S5: Raman spectroscopy indicating D and G bands for carbon presence in LFS@C nanocomposite sample.

Figure S6: (e) Charge/discharge plots after 20, 30 and 50^{th} cycle of LFS@C nanocomposite at C/50.

Sample	$\mathrm{R}_{\mathrm{S}}\left(\Omega ight)$	$R_{SEI}(\Omega)$	$R_{CT}(\Omega)$
LFS – c2	8.1	15.2	118.3
LFS – c11	8.3	29.5	92.3
LFS – c20	8.2	35.2	79.4
LFS – c50	8.3	39.3	48.3

Table S1: EIS fitting results for LFS@C nanocomposite.

Figure S7: EIS comparison at a very low frequency (0.5 mHz) between pristine LFS@C nanocomposite electrode and after 30th cycle. (a) Equivalent circuit model used to obtain the results, notably, where R_{PT} (Ω) denotes the phase transition during cycling ¹⁻³. (b) White open circle symbol corresponds to EIS of freshly assembled LFS@C electrode. Black solid circles correspond to cycled LFS@C electrode after 20th cycle. It can be clearly seen that the intercalation kinetics are changed completely after cycling. Obtained results are present in Table S2 below. R_{PT} (Ω) has reduced significantly after in-situ electrochemical phase transition. (c) An enlarged plot of red box shown in (b).

Table S1: EIS fitting results for pristine LFS@C nanocomposite electrode and after 30th discharge cycle.

Sample	$R_{S}(\Omega)$	$\mathbf{R}_{\mathrm{SEI}}(\Omega)$	$\mathbf{R}_{\mathrm{CT}}(\mathbf{\Omega})$	$R_{PT}(\Omega)$
LFS – Pristine	8.3	4.3	127.9	87,010
LFS – c30	8.2	41.2	86.2	10,254

Figure S8: SEM image of *ex-situ* electrode of LFS@C nanocomposite at different resolutions after 30th cycle, where cracks were introduced during handling.

Figure S9: Energy-dispersive X-ray spectroscopy (EDS) maps of pristine LFS@C nanocomposite electrode vs. after 30 cycles of galvanostatic charging/discharging collected along with TEM.

Figure S10 : *f*-ratio maps for Carbon are shown for pristine LFS@C nanocomposite electrode and after 30th discharge cycle.

Figure S11: Simulation of normal $Pmn2_1$ phase and inverse $Pmn2_1$ (or "cycled") of Li₂FeSiO₄ obtained via PDF-4+ 2019 software.

Figure S12: Le-Bail fitting results obtained for LFS@C nanocomposite after 30 cycles (collected at discharge state) via TOPAS software. Lattice parameters obtained from fitting are a = 6.2421(3) (Å), b = 5.3924(7) (Å) and c = 5.0119(5) (Å).

Figure S13: Illustrations of crystal structure models drawn by Vesta Software. (a) $Pmn2_1$ phase of LFS, where all tetrahedra point towards the same direction. Li-ions can migrate along only in two directions. (b) In the inverse $Pmn2_1$ (electrochemically cycled structure), where all the Fe-ions exchange site with half of the Li2-site, Li-ions can migrate along in three different directions ⁴. (c) For a visual aid, crystal structure was drawn without tetrahedra of Lithium, where Li and Fe atoms occupy different crystallographic sites in the ideal $Pmn2_1$ structure of Li₂FeSiO₄, denoted as Li1 (4b site) and Fe1 (2a site), respectively ⁴⁻⁵. During electrochemical lithiation/de-lithiation, Li migrates in either a-direction (into the paper as denoted by the red cross) or a zig-zag c-direction (denoted by blue arrows). After cycling, significant cation mixing occurred, a new pathway opens up and the lithium can diffuse into zig-zag b-direction (red-arrows) as well.

Figure S14: Zoomed-in pre-edge of XANES Iron K-edge spectra of pristine LFS@C nanocomposite electrode and after 30 cycles, the background was subtracted using Origin software.

References:

1. Orazem, M. E.; Tribollet, B., *Electrochemical impedance spectroscopy*. John Wiley & Sons: 2017.

Sen, U. K.; Johari, P.; Basu, S.; Nayak, C.; Mitra, S., An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide. *Nanoscale* 2014, 6 (17), 10243-10254.

3. Shaju, K.; Rao, G. S.; Chowdari, B., Li ion kinetic studies on spinel cathodes,

 $Li(M_{1/6}Mn_{11/6})O_4$ (M= Mn, Co, CoAl) by GITT and EIS. *Journal of Materials Chemistry* **2003**, *13* (1), 106-113.

4. Armstrong, A. R.; Kuganathan, N.; Islam, M. S.; Bruce, P. G., Structure and Lithium Transport Pathways in Li₂FeSiO₄ Cathodes for Lithium Batteries. *J. Am. Chem. Soc.* 2011, *133* (33), 13031-13035.

5. Liivat, A.; Thomas, J. O., Li-ion migration in Li₂FeSiO₄-related cathode materials: A DFT study. *Solid State Ion.* **2011**, *192* (1), 58-64.