Facile and efficient two-step formation of renewable monomer 2,5-furandicarboxylic acid from carbohydrates over NiOx catalyst

Huai Liu,^a Weile Li,^a Miao Zuo,^a Xing Tang,^{*a,b} Xianhai Zeng,^{a,b} Yong Sun,^{a,b}

Tingzhou Lei, $^{\rm c}$ Huayu Fang, $^{\rm d}$ Tianyuan Li $^{\rm d}$ and Lu Lin**, $^{\rm a,b}$

^a Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy, Xiamen University, Xiang'an South Road, Xiamen 361102, China.

^b Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiang'an South Road, Xiamen 361005, Fujian, China

° Henan Key Lab of Biomass Energy, Huayuan Road 29, Zhengzhou 450008, Henan, China

^d Fujian Huafeng New Materials Co., Ltd., Putian 351152, Fujian, China.

*Corresponding authors. E-mail addresses: <u>x.tang@xmu.edu.cn</u> (X. Tang); <u>lulin@xmu.edu.cn</u> (L. Lin).

Number of pages: 15 Number of figures: 10 Number of tables: 4

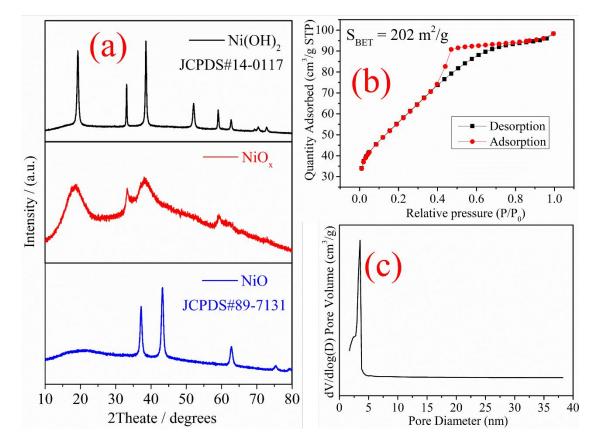


Figure S1. The XRD patterns of the synthesized catalysts (a), N_2 adsorption/desorption isotherm of NiO_x (b), pore size distribution curves of NiO_x (c).

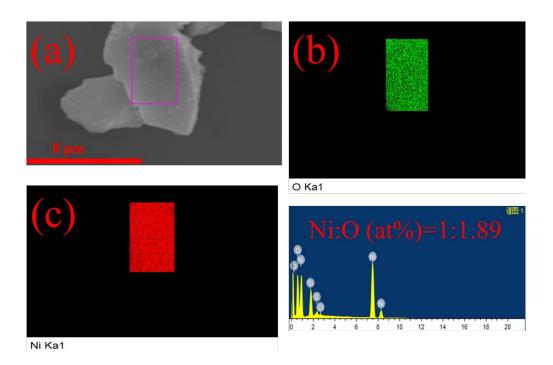
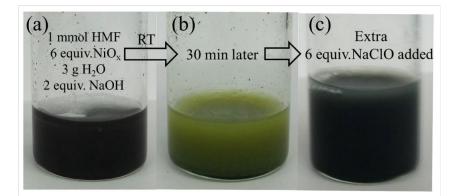
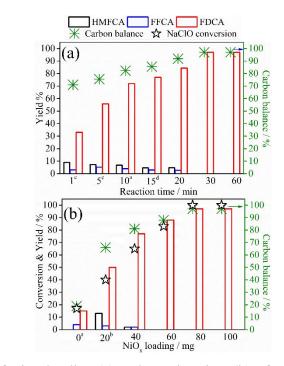




Figure S2. SEM image (a) and EDX elemental maps of the prepared NiO_x (b) O, (c) Ni.

Figure S3. The photos of the sample in Table 1, entry 2 before (a) and after (b) reaction. The photo (c) was taken after 6 equivalents of NaClO were added into (b) mixtures. An FDCA yield of 85% and full HMF conversion were detected after 10 min reaction of the addition of 6 equivalents of NaClO.

Figure S4. Effect of NiO_x loading (a) and reaction time (b). If not specified, the default reaction conditions are as follows: HMF (1 mmol), NiO_x (80 mg), 7.5wt% NaClO aqueous solution (6 mmol NaClO), 25 °C, 30 min. The HMF conversion was 100% except in the marked samples. (a 96%, b 98%, c 90%, d 99%, c 63%).

Entry	Oxidant	HMF conversion (%)	FFCA yield (%)	FDCA yield (%)
1 ^a	1 MPa O ₂	65	2	3
2 ^b	6 mmol H ₂ O ₂	26	4	2
3 ^b	6 mmol TBHP	15	3	0
4	6 mmol NaClO	100	0	97
5 ^b	3 mmol NaClO ₂	13	2	0
6 ^b	1.5 mmol NaClO ₄	23	5	0

 Table S1. The effect of the type of the oxidant.

Reaction condition: HMF (1 mmol), oxidant, NiO₂ (80 mg), 25 °C, 30 min. ^a NaHCO₃ (2 mmol), H₂O (3 g), 100 °C, 2 h. ^b NaHCO₃ (2 mmol), H₂O (3 g).

Hnfry	NaClO	NaClO	HMF	HMFCA	FFCA	FDCA	Carbon
	(mmol)	Conversion	conversion	yield	yield	yield	balance
	(1111101)	(%)	(%)	(%)	(%)	(%)	(%)
1	3	99	84	20	6	43	82
2	4	99	94	15	6	65	92
3	6	98	100	0	0	97	97

Table S2. The effect of the amount of NaClO.

Reaction condition: HMF (1 mmol), NiO_x (80 mg), 7.5 wt% NaClO aqueous solution, 25 °C, 30 min.

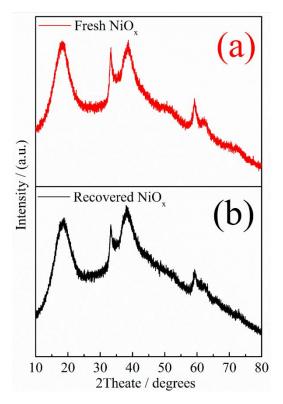

5	25	30 min	4.2	97	20	This work
4	90	6 h	0.25	70	458	Green Chem. (2019). DOI: 10.1039/c9gc01283d
3	85	10 h	0.6	93	138	Appl. Catal., B, 244 (2019): 965-973.
2	130	4 h	0.19	99	432	Green chem. 20.17 (2018): 3921-3926.
1	120	16 h	0.6	97	132	ChemSusChem 11.13 (2018): 2083- 2090.
Entry	Reaction Temperatur e (°C)	Reaction Time	Substrate Concentration (wt%)	FDCA yield	E factor ^a	Ref.

Table S3. Comparison of NiO_x catalytic system with the recently published works for the production of FDCA.

^a E factor = $\frac{Total waste(Kg)}{Product(Kg)}$

Figure S5. The photo of NiO_x and NaClO mixtures. The photo was taken when adding NiO_x (80 mg) to 7.5 wt% NaClO aqueous solution (3 g) 1 minute later. The conversion of NaClO was 58% after 30 minutes agitation.

Figure S6. XRD patterns of (a) fresh NiO_x and (b) NiO_x reused after eleven runs for the oxidation of pure HMF.

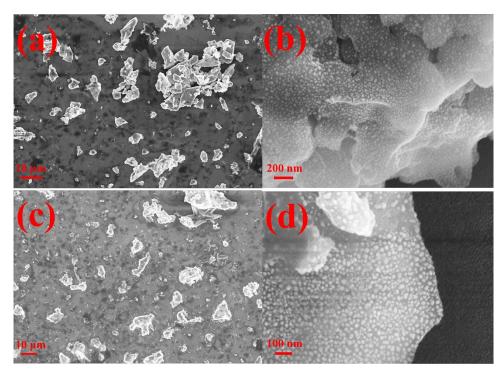


Figure S7. SEM images of (a), (b) fresh NiO_x and (c), (d) NiO_x reused after eleven runs for the oxidation of pure HMF.

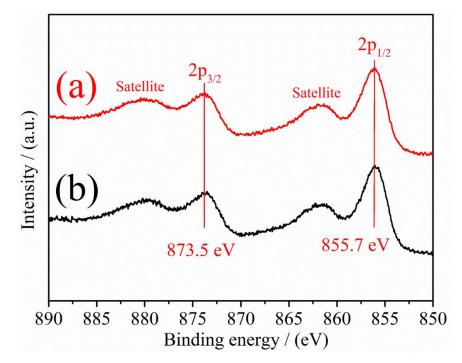
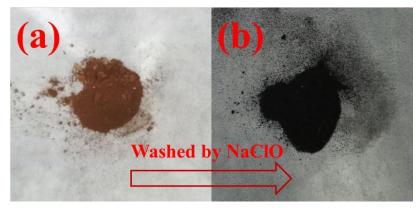



Figure S8. High-resolution XPS spectra Ni 2p of fresh NiO_x (a) and NiO_x reused after eleven runs (b) for the oxidation of pure HMF.

Enry	Material	Surface area (m ² /g)	Carbon deposit (wt%) °
1	NiO _x -fresh	202	0.00
2	NiO _x - reused after eleven runs ^a	198	0.34
3	NiO _x - reused after three runs ^b	168	3.30
4	Refreshed NiO _x by NaClO	197	0.68

Table S4. Surface area and carbon deposit of fresh NiO_x and reused NiO_x .

^a The substrate is pure HMF. ^b The substrate is glucose derived crude HMF. ^c Determined by an Elementar Vario EL III (Germany).

Figure S9. The NiO_x recovered from the reusability test of the oxidation of glucosederived crude HMF in third runs (a), the regenerated NiO_x by washing with 10 mL 7.5 wt% NaClO aqueous solution for 30 minutes (b).

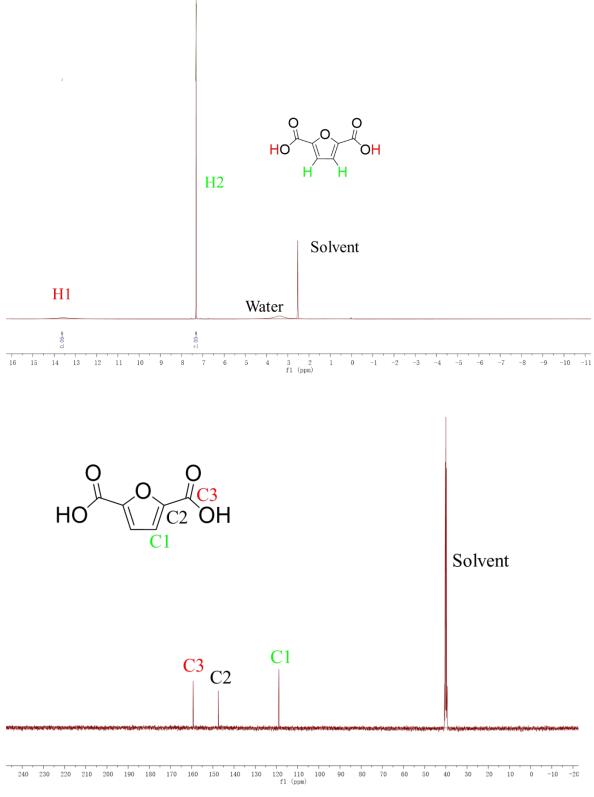


Figure S10. The ¹HNMR and ¹³CNMR spectrum of the obtained FDCA.