Supporting Information for: Methionine adenosyltransferase engineering to enable bioorthogonal
platforms for AdoMet-utilizing enzymes

Tyler D. Huber!2, Jonathan Clinger?, Yang Liu'?, Weijun Xu®, Mitchell D. Miller®, George N. Phillips, Jr.>4,
and Jon S. Thorson??

!Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, KY 40536-0596, USA; 2Center for Pharmaceutical Research and Innovation
(CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-
0596, USA; *Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77251-1892,
USA; “Department of Chemistry, Rice University, Space Science 201, Houston, TX 77251-1892, USA

Table of Contents

1. General materials and METNOAS .........coooiiiiiii e e e e e e e e e e e e e eeaennn s 2
I L=t et | 0 F= = 4 =1L PP 2
A 1= g 1= = | 0 =11 T o RS 2

2. General procedure for the synthesis of metOMe, metOEt, metOPr, and metOBU .........cccoeeeevvvvviiinnnnnn. 2

3. General procedure for the synthesis of metolMe, metolEt, and MetoIPr .........c.ccoovvviiiiiciini e, 4

4. Protein crystallization, data collection, and structure refinement ............cccoooooiiiiiii e, 7

5. SUPPIEMENLANY FEFEIENCES ...evviii e e e e e e e e ettt e e e e e e e e e e st it s e e eaeeesesrtannnns 7

Figure S1. Representative analytical HPLC.............oooiiiiiiiiiiie 9

Figure S2. Determination of kinetic parameters for mutant and wt-hMAT2A-catalyzed reactions .......... 10

Figure S3. hMAT2A-K289L electron density Map.........couuiiiiiiiieii i e et e e e e e eaaeees 11

Figure S4. Combinatorial plate-based screen of targeted hMAT2A mutants with L-Met analogues ....... 12

Table S1. Summary of crystal parameters, data collection, and refinement statistics ............cccccceeeeenn. 13

SPECIIOSCOPIC DALA ...uii i e e e e e e e e e et e e e e e e e e e e e e atta e e e eeaeeeeasbtanasaeeaeeeennnes 14-35

S1



1. General materials and methods.

1.1 General materials. Unless otherwise stated, all general chemicals and reagents (including methionine
analogues 2, 3, and 13 — 15) were purchased from Sigma-Aldrich (St. Louis, MO) and were reagent
grade or better. Metamine, or (2S)-4-(methylsulfanyl)butane-1,2-diamine, was purchased from Enamine
Ltd. (Kyiv, Ukraine). Metamide, or (S)-2-amino-4-(methylthio)butanamide, was synthesized as previously
described.S! S-adenosyl-L-methionine (AdoMet) was purchased as a 32 mM solution in 10% EtOH/5 mM
H.SO4 from New England Biolabs (Ipswich, MA). E. coli BL21(DE3) competent cells were purchased
from New England Biolabs (Ipswich, MA). The pET28a E. coli expression vector was purchased from
Novagen (Madison, WI). Primers were purchased from Integrated DNA Technologies (Coralville, 1A).
QuikChange Il site-directed mutagenesis kits were purchased from Agilent Technologies (Santa Clara,
CA). PD-10 columns and Ni-NTA superflow columns were purchased from GE Healthcare (Piscataway,
NJ). Crystal screen kits were purchased from Hampton Research (Aliso Viejo, CA), Molecular
Dimensions (Altamonte Springs, FL), Rigaku (Seattle, WA) and Microlytic (Burlington, MA).

1.2 General methods. X-ray data were collected at beamline 21-ID-F (LS-CAT) in the Advanced Photon
Source at Argonne National Laboratory (Chicago, IL). NMR spectra were obtained on a Varian Unity
Inova 400 MHz instrument (Palo Alto, CA) at the University of Kentucky College of Pharmacy NMR facility
using CDCls (D, 99.96%) with or without 0.05% v/v TMS from Cambridge Isotopes (Cambridge Isotope
Laboratories, MA). H and 3C chemical shifts were referenced to internal solvent resonances.
Multiplicities are indicated by s (singlet), d (doublet), dd (doublet of doublets), t (triplet), g (quartet), quin
(quintet), m (multiplet), and br (broad). Chemical shifts are reported in parts per million (ppm) and
coupling constants J are given in Hz. Routine *C NMR spectra were fully decoupled by broad-broad
WALTZ decoupling. All NMR spectra were recorded at ambient temperature.

Normal-phase flash chromatography was performed on 40-63 um, 60 A silica gel (Silicycle, Quebec).
Analytical TLC was performed on silica gel glass TLC plates (EMD Chemicals Inc, Gibbstown, NJ).
Visualization was accomplished with UV light (254 nm) followed by staining with dilute H2SO4 (5% in
EtOH) solution, KMnO4 solution (1.5 g of KMnO,4, 10g K2COs3, and 1.25 mL 10% NaOH in 200 mL water)
and heating, or 10% ninhydrin in EtOH and heating. HPLC was accomplished using an Agilent 1260
system equipped with a DAD detector. HPLC Method: To monitor enzyme reactions, analytical reverse-
phase (RP) HPLC was conducted with a Luna Cis (5 um, 4.6 mm x 250 mm; Phenomenex, Torrance,
California, USA) column [gradient of 1% B to 20% B over 5 min, 20% B to 55% B over 15 min, 55% B
to 100% B over 1 min, 100% B for 5 min, 100% B to 1% B over 1 min, 1% B for 8 min (A = ddH20 with
0.1% formic acid; B = acetonitrile) flow rate = 0.4 mL min'; Azss, Azeo].

2. General procedure for the synthesis of metOMe, metOEt, metOPr, and metOBu

Boc Boc
HIN” Nafi , RX HN” MeOH, HCI NH, HCI
HO\)\/\S/ THF, rt R/O\)\/\S/ 60 °C, 1 hr R/O\)\/\S/
A B 7-1
X = Br, | 0

R = Me, Et, n-Pr, n-Bu

Rxn 1: NaH (26 mg, 0.65 mmol) was added to a solution of compound A (0.7 equivalents) in 4.3 mL dry

THF at 0 °C. The mixture was stirred for 10 min, alkyl halide (1.3 equivalents) was added, and the reaction
continued for an additional 1.5 hr with stirring (monitored by TLC and LC-MS). The organics were removed
under vacuum and the residue was purified by normal-phase column chromatography (n-hexane:EtOAc,
20:1 ~ 8:1) to give the desired product B.
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Rxn 2: Compound B (0.2 mmol) was dissolved in 1.5 mL MeOH. 0.5 mL concentrated HC| was added and
the mixture was refluxed at 60 °C for 1.5 hr (monitored by TLC, stained by iodine). Upon completion,
solvent was removed under vacuum to give the HCI salt of product 7, 8, 9, or 10.

NH, HCI

/O S/

(S)-1-Methoxy-4-(methylthio)butan-2-amine (metOMe, 7). Methyl iodide (122 mg, 0.86 mmol) was used
to obtain the product as a white solid (66 mg, 2 steps, 81% vyield). '"H NMR (400 MHz, CDCl;) d: 8.49 (s,
2H), 3.53-3.69 (m, 3H), 3.42 (s, 3H), 2.62-2.75 (m, 2H) 2.14-2.26 (m, 1H), 2.12 (s, 3H), 1.92-2.05 (m, 1H).
3C NMR (100 MHz, CDCls) d: 71.2, 59.2, 50.6, 29.8, 28.5, 15.2. HRMS [M+H] * calculated for CeH1sNOS
150.0947, found 150.0946.

NH, HCI

~_© s~

(S)-1-Ethoxy-4-(methylthio)butan-2-amine (metOEt, 8). Ethyl iodide (135 mg, 0.86 mmol) was used to
obtain the product as a white solid (38 mg, 2 steps, 55% yield). 'H NMR (400 MHz, CDCls) &: 8.47 (s, 2H),
3.49-3.73 (m, 5H), 2.60-2.75 (m, 2H) 2.14-2.25 (m, 1H), 2.12 (s, 3H), 1.94-2.05 (m, 1H), 1.24 (t, J=7.0 Hz
3H). C NMR (100 MHz, CDCls) &: 69.0, 67.0, 50.8, 29.8, 28.5, 15.1, 15.0. HRMS [M+H] * calculated for
C7H1eNOS 164.1104, found 164.1101.

NH, HCI

P LY s~

(S)-4-(Methylthio)-1-propoxybutan-2-amine (metOPr, 9). 1-Bromopropane (105 mg, 0.86 mmol) was
used to obtain the product as a light yellow solid (115 mg, 2 steps, 49% yield). '"H NMR (400 MHz, CDCls)
0: 8.48 (s, 2H), 3.52-3.71 (m, 3H), 3.40-3.51 (m, 2H), 2.61-2.76 (m, 2H) 2.14-2.25 (m, 1H), 2.12 (s, 3H),
1.94-2.05 (m, 1H), 1.57-1.68 (m, 2H), 0.92 (t, J = 7.5 Hz 3H). "*C NMR (100 MHz, CDCls) &: 73.3, 69.2,
50.7, 29.8, 28.5, 22.6, 15.1, 10.5. HRMS [M+H]* calculated for CsH20NOS 178.1260, found 178.1255.

NH, HCI
\/\/O S/

(S)-1-Butoxy-4-(methylthio)butan-2-amine (metOBu, 10). n-Butyl bromide (118 mg, 0.86 mmol) was
used to obtain the product as a light yellow solid (251 mg, 2 steps, 55% yield). '"H NMR (400 MHz, CDCls)
o: 8.45 (s, 2H), 3.55-3.71 (m, 3H), 3.46-3.53 (m, 2H), 2.62-2.77 (m, 2H) 2.15-2.25 (m, 1H), 2.13 (s, 3H),
1.94-2.07 (m, 1H), 1.54-1.64 (m, 2H), 1.31-1.42 (m, 2H), 0.92 (t, J = 7.5 Hz 3H). *C NMR (100 MHz,
CDCls) 6: 71.5, 69.2, 50.8, 31.4, 29.8, 28.5, 19.2, 15.1, 13.9. HRMS [M+H] * calculated for CoH22NOS
192.1417, found 192.1416.
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3. General procedure for the synthesis of metolMe, metolEt, and metolPr

0]
_Fmoc SN _Fmoc _Fmoc
HN N | HN HN
HO EDCI, HOBt _N RMgBr, THF R
Ws/ ~o T\)\/\S/ O—> s~
R Et;N, DMF o ofc-rt g
C D R = Me, Et, n-Pr E
NaBH,, MeOH HN,Fmoc Normal phase column HN,Fmoc HN,Fmoc
’ chromatography + R
—>0°C—rt RWS/ . '>R:J\/\S/ s~
OH F OH G OH H
d'a;t;’ti‘::‘er Piperidine
THF, rt 30 min
J Piperidine
. NH NH
THF, rt 30 min 2 2
R\)\/\S/ R\)\/\S/
NH, : :
R _ OH OH
S R,S-4,5,0r 6 S,S-4,5, 0or 6
OH 4-6
diastereomer
mixture

Rxn 1: N,O-dimethylhydroxylamine hydrochloride (1.25 g, 12.5 mmol), HOBt (1.7 g, 12.5 mmol) and EDCI
(2.4 g, 12.5 mmol) were added to a solution of compound C (3.7 g, 10 mmol) in 25 mL dry DMF. The
mixture was stirred for 1 hr, then EtsN (1.7 mL, 12.5 mmol) was added and the reaction stirred for an
additional 5 hr (monitored by TLC and LC-MS). Upon completion, the reaction was diluted with 100 mL
H>O and extracted with EtOAc (50 mL x 2), washed with water (100 mL x 2), brine (50 mL x1) and then
dried over Na,SOa. The mixture was filtered, organic solvent was removed under vacuum, and the crude
mixture purified by normal-phase column chromatography (n-hexane:EtOAc, 4:1 ~ 1:1) to give the desired
product D as a white solid, 75% vyield.

Rxn 2: Alkyl magnesium halide (3 M in THF, 3.0 mmol, 1 mL total volume) was added dropwise to a
solution of D (1.0 g, 2.4 mmol) in 20 mL dry THF at 0 °C and the mixture was stirred at room temperature
for 6 hr (monitored by TLC and LC-MS). Saturated NH4Cl solution (50 mL) was added to quench the
reaction and the reaction was extracted by EtOAc (50 mL x 2), washed with water (50 mL x 2), brine (50
mL x 1) and dried over Na ;SO.. The organic solvent was removed under vacuum and the residue was
purified by normal-phase column chromatography (n-hexane:EtOAc, 8:1 ~ 2:1) to give the desired product
E (R = Me, 69% yield; R = Et, 60% yield; R = n-Pr, 51% vyield).

Rxn 3: NaBH. (74 mg, 2.0 mmol) was added to a solution of E (1.0 mmol) in 5 mL of MeOH at 0 °C and
the mixture was stirred at room temperature for 8 hr (monitored by TLC and LC-MS). The reaction was
guenched with the addition of 30 mL H,O and the mixture was extracted by EtOAc (30 mL x 2), washed
with water (30 mL x 2), brine (30 mL x 1) and then dried over Na,SO4. The organics were removed under
vacuum and the residue was purified by normal-phase column chromatography (n-hexane:EtOAc, 8:1 ~
2:1) to give the desired product F (R = Me, 75% yield; R = Et, 66% yield; R = n-Pr, 71% yield).
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Rxn 4: Piperidine (1 mL, 12.5 mmol) was added to a solution of F (0.26 mmol) in 4 mL THF and the mixture
was stirred for 30 min (monitored by TLC). Upon completion, solvent was removed under vacuum and the
residue was purified by normal-phase column chromatography (CH2Clz:MeOH, 10:1 ~ 4:1) to give the
desired product 4, 5, or 6.

HN/Fmoc Normal phase column HN,Fmoc HN,Fmoc
chromatography . \)\/\ ¥
WS/ [ > - S/ S/
OH OH OH
N-Fmoc-4 N-Fmoc-R,S-4 N-Fmoc-S,S-4

(9H-Fluoren-9-yl)methyl [(3S)-4-hydroxy-1-(methylthio)pentan-3-yl]Jcarbamate (N-Fmoc-4, N-Fmoc-
R,S-4, and N-Fmoc-S,S-4). Methyl magnesium bromide (3 M in THF), (1mL, 3mmol) was used to obtain
the diastereomeric mixture (N-Fmoc-4) as a white solid (280 mg, 3 steps, 32% yield), which was resolved
by normal-phase column chromatography to obtain N-Fmoc-R,S-4 (31 mg, 3 steps, 3.5 % yield) and N-
Fmoc-S,S-4 (95 mg, 3 steps, 10.8% yield). Enantioselectivity was determined by the NMR analysis of (R)
and (S) Mosher esters, N-Fmoc-S,S-4-(R)-MTPA and N-Fmoc-S,S-4-(S)-MTPA, obtained from N-Fmoc-
S,S-4 (see below) following standard protocols.S?

_Fmoc

(9H-Fluoren-9-yl)methyl [(3S,4R)-4-hydroxy-1-(methylthio)pentan-3-ylJcarbamate (N-Fmoc-R,S-4).
"H NMR (400 MHz, CDCl3) &: 7.75 (d, J = 7.4 Hz 2H), 7.58 (d, J = 7.4 Hz 2H), 7.38 (t, J = 7.4 Hz 2H), 7.30
(t, J=7.4 Hz 2H), 4.98 (d, J=9.4 Hz 1H), 4.44 (d, J = 6.7 Hz 2H), 4.20 (t, J = 6.7 Hz 1H), 3.80-3.88 (m,
1H), 3.55-3.65 (m, 1H), 2.49 (s, 2H), 2.08 (s, 3H), 1.75-1.85 (m, 2H), 1.16 (d, J = 6.3 Hz 3H). HRMS [M+H]
* calculated for C21H2sNO3S 372.1628, found 372.1625.

_Fmoc
HN

A

OH

(9H-Fluoren-9-yl)methyl [(3S,4S)-4-hydroxy-1-(methylthio)pentan-3-ylJcarbamate (N-Fmoc-S,S-4).
"H NMR (400 MHz, CDCl3) 8: 7.75 (d, J = 7.4 Hz 2H), 7.58 (d, J = 7.4 Hz 2H), 7.38 (t, J = 7.4 Hz 2H), 7.30
(t, J=7.4Hz 2H), 4.98 (d, J = 9.4 Hz 1H), 4.44 (d, J = 6.7 Hz 2H), 4.20 (t, J = 6.7 Hz 1H), 3.80-3.88 (m,
1H), 3.55-3.65 (m, 1H), 2.49 (s, 2H), 2.08 (s, 3H), 1.75-1.85 (m, 2H), 1.16 (d, J = 6.3 Hz 3H). HRMS [M+H]
* calculated for C21H2sNO3S 372.1628, found 372.1629.

_Fmoc _F
HN HN ¢

\l)\/\s/ HN/Fmoc \l)\/\s/
0. .0 - (S)-Mosher chloride \I)\/\S/ (R)-Mosher chloride; 0. .0
I CH,Cl,, Pyridine, CH,Cl,, Pyridine, f
) CF;

£~CF, 0-rt 3 hr OH 0-rt 3 hr ¢
Ph”Ame MeO’5,
N-Fmoc-S,S-4-(R)-MTPA N-Fmoc-5,5-4 N-Fmoc-S,S-4-(S)-MTPA
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N-Fmoc-S,S-4-(R)-MTPA. The procedures applied to the synthesis of N-Fmoc-S,S-4-(R)-MTPA used N-
Fmoc-S,S-4 (10 mg, 0.027 mmol), pyridine (10 uL, 0.1 mmol) and (S)-Mosher chloride (20 uL, 0.1 mmol)
to obtain the product as a white solid (12 mg, 89% yield). '"H NMR (400 MHz, CDCl5) &: 7.77 (d, J = 7.4 Hz
2H), 7.57 (d, J = 7.4 Hz 2H), 7.28 -7.50 (m, 9H), 5.09-5.17 (m, 1H), 4.58 (d, J = 9.4 Hz 1H), 448 (d, J =
6.3 Hz 2H), 4.20 (t, J=6.3 Hz 1H), 3.90 (t, J = 10.1 Hz 1H), 3.45 (s, 3H), 2.31-2.52 (m, 2H), 2.04 (s, 3H),
1.78-1.90 (m, 1H), 1.45-1.55 (m, 1H), 1.28 (d, J = 6.7 Hz 3H). HRMS [M+H]* calculated for C31H33F3NOsS
588.2026, found 588.2023.

N-Fmoc-S,S-4-(S)-MTPA. The procedures applied to the synthesis of N-Fmoc-S,S-4-(S)-MTPA used N-
Fmoc-S,S-4 (10 mg, 0.027 mmol), pyridine (10 pL, 0.1 mmol) and (R)-Mosher chloride (20 uL, 0.1 mmol)
to obtain the product as a white solid (15 mg, 97% yield). '"H NMR (400 MHz, CDCls) &: 7.77 (d, J = 7.5 Hz
2H), 7.57 (d, J = 7.5 Hz 2H), 7.28 -7.50 (m, 9H), 5.12-5.20 (m, 1H), 4.41-4.53 (m, 3H), 4.20 (t, J=6.2 Hz
1H), 3.84 (t, J = 10.2 Hz 1H), 3.54 (s, 3H), 2.25-2.48 (m, 2H), 1.99 (s, 3H), 1.73-1.84 (m, 1H), 1.35-1.45
(m, 1H), 1.34 (d, J = 6.3 Hz 3H). HRMS [M+H] * calculated for C31H33F3NOsS 588.2026, found 588.2020.

NH,
\:)\/\S/
OH

(2R,3S)-3-Amino-5-(methylthio)pentan-2-ol (R,S-metolMe, R,S-4). The procedures applied to the
synthesis of (2R,3S)-3-amino-5-(methylthio)pentan-2-ol used N-Fmoc-R,S-4 (10 mg, 0.027 mmoal) to
obtain the product as a colorless oil (6 mg, 63% yield). 'H NMR (400 MHz, CDCls) &: 3.84-3.96 (m, 1H),
3.20-3.29 (m, 1H), 2.69-2.81 (m, 2H), 2.13 (s, 3H), 1.85-2.05 (m, 2H), 1.33 (d, J = 5.8 Hz 3H). *C NMR
(100 MHz, CDCls) 8: 71.3, 59.2, 50.7, 29.9, 28.5, 15.3. HRMS [M+H] * calculated for CsH1sNOS 150.0947,
found 150.0943.

NH,

WS/

OH

(2S,3S)-3-Amino-5-(methylthio)pentan-2-ol (S,S-metolMe, S,S-4). The procedures applied to the
synthesis of (2S,3S)-3-amino-5-(methylthio)pentan-2-ol used N-Fmoc-S,S-4 (25 mg, 0.067 mmol) to
obtain the product as a colorless oil (10 mg, 78% yield). '"H NMR (400 MHz, CDCls) &: 4.15-4.25 (m, 1H),
3.43-3.52 (m, 1H), 2.61-2.81 (m, 2H), 2.13 (s, 3H), 1.96-2.08 (m, 1H), 1.82-1.95 (m, 1H), 1.27 (d, J = 6.7
Hz 3H). *C NMR (100 MHz, CDCls) &: 71.2, 59.3, 50.5, 29.8, 28.5, 15.2. HRMS [M+H] * calculated for
CeH16NOS 150.0947, found 150.0945.

NH,

A

OH

(4S)-4-Amino-6-(methylthio)hexan-3-ol (metolEt, 5). Ethyl magnesium bromide (1 M in THF) (1 mL, 1
mmol) was used to obtain the diastereomeric mixture of the product as a colorless oil (27 mg, 4 steps,
18% yield). '"H NMR (400 MHz, CDCls) &: 3.37-3.44 (m, 1H), 2.87-2.95 (m, 1H), 2.49-2.71 (m, 2H), 2.10
(s, 3H), 1.71-1.81 (m, 1H), 1.49-1.61 (m, 1H), 1.35-1.48 (m, 2H), 0.98 (t, J = 7.5 Hz 3H). *C NMR (100
MHz, CDCls) 6: 69.2, 67.2, 51.0, 30.0, 28.7, 15.4, 15.2. HRMS [M+H]* calculated for C;H1sNOS 164.1104,
found 164.1105.
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NH,

VWS/

OH

(3S)-3-Amino-1-(methylthio)heptan-4-ol (metolPr, 6). n-Propyl magnesium bromide (1 M in THF) (1 mL,
1 mmol) was used to obtain the diastereomeric mixture of the product as a colorless oil (29 mg, 4 steps,
15% yield). '"H NMR (400 MHz, CDCls) &: 3.93-4.00 (m, 1H), 3.33-3.42 (m, 1H), 2.63-2.85 (m, 2H), 2.13
(s, 3H), 1.83-2.05 (m, 2H), 1.45-1.64 (m, 2H), 1.29-1.43 (m, 2H), 0.95 (t, J = 7.0 Hz 3H). *C NMR (100
MHz, CDCls) &: 73.1, 69.0, 50.5, 29.6, 28.3, 22.4, 14.9, 10.3. HRMS [M+H] * calculated for CsH20NOS
178.1260, found 178.1258.

4. Protein crystallization, data collection, and structure refinement.

Large scale expression and purification of the hMAT2A-K289L mutant followed the same protocol as the
wild type.® Purified hMAT2A-K289L mutant protein at a concentration of 10-20 mg mL™? in a buffer
containing 50mM HEPES, pH 7.5, 10 mM Metol, 5 mM magnesium chloride, 2 mM ADP was mixed with a
reservoir solution in a 200 nL:200 nL sitting drop crystallization trail. Hits were obtained using the Index-
HT screen (Hampton Research, Aliso Viejo, CA) setup with a Mosquito liquid handling robot (TTP Labtech).
The best crystals were produced using a reservoir containing 0.2 M KCI, 0.05 M HEPES pH7.5, 35% (v/v)
pentaeythritol propoxylate (5/4 PO/OH). They were harvested after 7 months using 100 um Dual Thickness
MicroMounts (MiTeGen, Ithaca, NY) under silicon oil (Hampton Research, Aliso Viejo, CA) and plunge-
cooled in liquid nitrogen. Data were collected with a Rayonix MX-300 CCD detector (Evanston, IL) on LS-
CAT beamline 21-ID-F at the Advanced Photon Source (APS, Argonne National Lab). Data were
integrated, reduced and scaled using XDS*® followed by anisotropic analysis, elliptical truncation and
merging using STARANISO.® The resolution limits of the cutoff surface were 2.8 A, 1.8 A and 2.1 A along
the a*, b* and c* axes with a maximum resolution limit of 2.05 A. Since the data are incomplete to 2.05 A,
we define the nominal resolution as 2.30 A, which is the resolution of a dataset that is 100% complete and
has the same number of reflections as observed in dataset after applying the cutoff.” Nevertheless, there
are 2618 reflections observed between 2.05 and 2.30 A (39.1% complete for this shell) included in the
refinement. Model completion and refinement were performed with Coot,® phenix.refine® and Buster.2° The
crystals were isomorphous with the higher resolution wild-type structure (PDB: 2p02),! which was used
for the initial phasing. Refinement included torsion-angle, reference model restraints derived from the 2p02
structure and TLS refinement with one TLS group for the protein. Comparison of the final model to the
2p02 reference model has an RMSD 0.34 for all 2983 matching atoms and 0.25 for the 393 matching Ca
atoms. Data-reduction and refinement statistics are summarized in supplemental Table S1 and binding
pocket density is shown in Figure S3.
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Figure S1. Representative analytical HPLC at Azso. (A) hMAT2A mutant K289L (10 uM) with 10 mM
metol and 2 mM ATP after 24 hr, highlighting the lack of MTA (13.5 min) production. (B) hMAT2A mutant
K289L (10 puM) with 10 mM L-Met and 2 mM ATP after 24 hr, highlighting notable production of MTA
(13.5 min). (C) hMAT2A mutant K289F (10 uM) with 10 mM R,S-metolMe and 2 mM ATP after 24 hr,
highlighting the lack of MTA (13.5 min) production. AdoMet analogues (5.8 min), adenine (7.2 min), ATP
(12.6 min), MTA (13.5 min).
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Figure S2. Determination of kinetic parameters for mutant and wt-hMAT2A-catalyzed reactions.
[hNMAT2A or hMAT2A mutant] = 10 uM and [ATP]; = 2000 uM in all experiments. (A) wt-hMAT2A, [Met];
= varied. (B) wt-hMAT2A, [Metol] = varied. (C) hMAT2A mutant E70S, [Met]; = varied. (D) hMAT2A
mutant K289S, [Metol] = varied. (E) hMAT2A mutant Q113D, [Met]; = varied. (F) hMAT2A mutant
Q113D, [Metol]; = varied. (G) hMAT2A mutant K289L, [Met]; = varied. (H) hMAT2A mutant K289L, [Metol];

= varied.



Figure S3. hMAT2A-K289L electron density map. (A) Ribbon diagram of the hMAT2A-K289L dimer with
the L289 residue highlighted in yellow. (B) Stereo triptych (left-right-left) showing the hMAT2A-K289L mFo-
DFc polder omit electron density map*? contoured at +3.2 (green), +8.0 (yellow) and -3.2 (red) r.m.s.d. The
residues adjacent to and including the mutation 288-TLV-290 (cyan carbons) as well as the adenosine
(gray carbons), disordered pyrophosphate (red and orange), magnesium ion (green), potassium ion
(purple) and nearby waters were omitted from the polder map calculation. The orientation is the same as
(A) with the magenta protomer shown in surface representation and only the omitted 288-TLV-290
tripeptide shown from the cyan protomer for clarity.
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Figure S4. Combinatorial plate-based screen of targeted hMAT2A mutants with L-Met analogues
highlighted in Figure 2. The heat map compares the relative activity of h(MAT2A mutant (y-axis) and L-Met
analogue (x-axis) pairings. The color of each square is dependent on the measured mean relative
luminescence units (RLU) under experimental conditions for that mutant. Red corresponds to lower
observed luminescence (i.e., lower [ATP]) as an indirect measure of turnover; blue indicates higher
observed luminescence (i.e., higher [ATP]) as an indirect measure of lack of turnover; X, not tested.
Standard assay conditions: 10 mM L-Met analogue, 1.5 mM ATP, 37 °C, 60 min.
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Table S1. Summary of crystal parameters, data collection, and refinement statistics. Elliptically truncated
data from STARANISO was used for the final refinement.

Crystal parameters hMAT2A - K289L
Space group 1222
Unit-cell lengths (A) 60.6, 104.1, 63.0
Data collection statistics after elliptical trimming before elliptical trimming
Wavelength (A) 0.98
Resolution range (A) 40-2.05 40-2.05
High Resolution bin range (A) (2.22-2.05) (2.22-2.05)
No. of observations measured 146,211 (14,326) 199,742 (37,145)
No. of unique reflections 16,840 (1,684) 23,368 (4,770)
Completeness spherical (%) 72.0 (35.9) 99.9 (99.4)
Completeness elliptical (%) 93.9 (85.7)
Rmerge” 0.194 (1.66) 0.254 (2.93)
Rmeas” 0.207 (1.76) 0.270 (3.14)
Redundancy 8.7 (8.5) 8.6 (7.8)
Mean | / sigma (1) 9.3(1.4) 6.9 (0.7)
CCy° 1.00 (0.42) 1.00 (0.34)
Refinement and model statistics
Rcryst / Rfreed 0.174/0.203
No. of reflections (total / test) 16,835/ 825
RMSD bonds (A) 0.002
RMSD angles (°) 0.64
No. of protein atoms 5,137
No. of waters 158
No. of auxiliary molecules 1 adenosine, 1 pyrophosphate, 1 magnesium ion, 1 potassium ion
Ligands RSCC*® 093 /098 /099 /1.0
B factor - protein/ligand/solvent (A?) 37.5/39.5/36.5
All atom clashscore' 2.3
Protein RMSD to reference 2P02 (A all / Cay) 0.34/0.25
Ramachandran plot (%)
Favored / allowed / disallowed regions' 97.1/29/0.0
PDB 6POV

*Rmerge = 2 h 2i | li () — <I(h)>| / Y li(h), where li(h) is the intensity of an individual measurement of the
reflection and <lI(h)> is the mean intensity of the reflection.

PRmeas = Y n [N/(N-D)]¥25 | i (h) — <I(h)>] / S5 li(h), is the Redundancy-independent merging R factor?
“CCup= ¥ (X — <x>)(y — <X>)/[3(x — <x>)2Z(y — <y>)7]"?

9Reryst = S ||Fobs|-K|Fcaic||/Sh |Fobs|, where Fons and Feac are the observed and calculated structure factor
amplitudes, respectively. Riee, the same as Reysi, but for the 4.9% of reflections chosen at random and

omitted from refinement.
fligand RSCC is ligand real-space correlation coefficient, which provides an objective measure of the fit of

atom coordinates to electron density.
'as defined by molprobity.**
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Figure S6. *H NMR (400 MHz, CDCIs) of N-Fmoc-R,S-4.
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