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Multiscale analysis of growth rate

Model

A simple analysis for the interaction of di�usion and growth in our model is possible under

the assumption of planar symmetry. Speci�cally, we assume that di�usion is fast compared

to step growth so that inhomogeneities in the density in the planes parallel to the crystal

surface are very small or are short-lived compared to the time-scale of step growth. In this

case, the concentration depends only on the z−coordinate, ct (z), and satis�es a di�usion

equation

∂ct (z)

∂t
= D

∂2ct (z)

∂z2
(1)

Boundary conditions are needed at the top and bottom of the simulation cell. Consider one

cell in the computational lattice in the top-most layer of the �uid. The average number

of molecules expected in such a cell is ct (Lz) a
3. Molecules can enter and leave via any of
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the six faces of the cell but movement via the lateral faces is of no importance since we are

assuming homogeneity within the plane: this means that the rates of molecules entering and

leaving via the lateral faces exactly balance. The rate at which molecules leave via the top

and bottom faces is simply νjumpct (Lz) a
3 in each case. The rate at which molecules enter at

the bottom is correspondingly νjumpct (Lz − a) a3 while the rate at which they enter via the

top is the product of the rate at which insertions are attempted and the probability that the

cell is empty, radd (1− ct (Lz) a
3). Putting this together,

∂a3ct (Lz)

∂t
=
(
radd

(
1− ct (Lz) a

3
)
− νjumpct (Lz) a

3
)

(2)

+
(
νjumpct (Lz − a) a3 − νjumpct (Lz) a

3
)

or in the continuum limit,

∂ct (Lz)

∂t
' a−3radd − (radd + νjump) ct (Lz)− a−1D

(
∂ct (z)

∂z

)
z=L

(3)

At the interface between the crystal and the �uid, taken to be at position z = Ht, there

must be a balance between the rate at which material arrives at the surface, via di�usion,

and the rate at which the crystal grows giving

−D
(
∂ct (z)

∂z

)
Ht

LxLy = a−2v (ct (Ht))Ly (4)

where it is assumed that the steps are parallel to the y-direction and grow in the x−direction.

The crystal increases height by one lattice cell, so Ht → Ht + a, when a total of NxNy

molecules have been added so, in the continuum limit, we have that dH = a
NxNy

dM where

dM is the change in mass of the crystal. As a step grows a distance dLx = vdt, the crystal

adds LydLx/a
2 molecules so dM/dt = Lyv/a

2 and the balance requires

dHt

dt
=

a

NxNy

Lyv (ct (Ht))

a2
=

a

Lx
v (ct (Ht)) (5)
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So, the model for the rate of step growth can be written as:

∂ct (z)

∂t
= D

∂2ct (z)

∂z2
, ct (Lz) = At and ct (Ht) = Bt (6)

dHt

dt
=

a

Lx
v (Bt)

dAt
dt

= a−3radd − (radd + νjump)At − a−1D
(
∂ct (z)

∂z

)
z=L

v (Bt) = −a2LxD
(
∂ct (z)

∂z

)
z=Ht

Quasi-steady state

The problem admits of a natural small parameter, ε ≡ a
Lx
. This arises because the rate of

growth in the z−direction is necessarily small compared to the rate of step advancement.

We can therefore use this to construct a simple multiscale analysis. We slightly rewrite the

system of equations as

∂ct (z)

∂t
= D

∂2ct (z)

∂z2
, ct (Lz;Ht) = At (Ht) and ct (Ht;Ht) = Bt (Ht) (7)

dHt

dt
= εv (Bt)

dAt
dt

= a−3radd − (radd + νjump)At − εa−2D
Lx
Lz

(
Lz
∂ct (z)

∂z

)
z=L

v (Bt) = −a2Lx
Lz
D

(
Lz
∂ct (z)

∂z

)
z=Ht

to emphasize the fact that we expect the concentration near the crystal to be close to its

equilibrium value so that ∂ct(z)
∂z
∼ c(Lz)−ceq

Lz
. Hence, we wish to treat Lz

∂ct(z)
∂z

as being of

order ε0. With this in mind, it is clear that the only consequence of ε being small is that

the rate of growth in the z-direction is small. We could use this as the basis for a general

multiscale analysis but here we restrict attention to the quasi-steady state in which the only

time-dependence of the concentration occurs via its dependence on Ht. In this case, we have
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that ct (z)→ c (z;Ht) and

∂ct (z)

∂t
=
∂c (z;Ht)

∂Ht

dHt

dt
= εv (B (Ht))

∂c (z;Ht)

∂Ht

(8)

so

εv (B (Ht))
∂c (z;Ht)

∂Ht

= D
∂2c (z;Ht)

∂z2
, c (Lz;Ht) = A (Ht) and c (Ht;Ht) = B (Ht) (9)

εv (B (Ht))
dA (Ht)

dHt

= a−3radd − (radd + νjump)A (Ht)− εa−2D
Lx
Lz

(
Lz
∂c (z;Ht)

∂z

)
z=L

v (B (Ht)) = −a2Lx
Lz
D

(
Lz
∂c (z;Ht)

∂z

)
z=Ht

with the height of the crystal being determined by dHt

dt
= εv (Bt). These equations can be

solved perturbatively by expanding c (z;Ht) = c(0) (z;Ht)+εc(1) (z;Ht)+ ...and solving order

by order in ε. At lowest order, this gives

0 = D
∂2c(0) (z;Ht)

∂z2
(10)

0 = a−3radd − (radd + νjump)A(0) (Ht)

v
(
B(0) (Ht)

)
= −a2Lx

Lz
D

(
Lz
∂c(0) (z;Ht)

∂z

)
z=Ht

with solution

c(0) (z;Ht) = A(0) +
(
B(0) (Ht)− A(0)

) z − Lz
Ht − Lz

(11)

A(0) =
a−3radd

radd + νjump

v
(
B(0) (Ht)

)
= −a2D

(
B(0) (Ht)− A(0)

) Lx
Ht − Lz

which is the result used in the main text. Notice that the growth rate is zero when B(0) (Ht) =

c(0) (Ht;Ht) is the equilibrium concentration. In this case, there can be no gradients in the

density so it must also be the case that B(0) (Ht) = A(0) which identi�es ceq = a−3radd
radd+νjump

as
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quoted in the main text. The solution could be continued to higher order with no di�culty.

As stated at the beginning of this Appendix, these calculations are only valid if inhomo-

geneities in the planes parallel to the crystal surface are either very small or are short-lived

on the timescale of step growth. The fact that our results are in good agreement with the

simulations supports this assumption under the conditions considered here. We have, in se-

lected cases, actually determined the variation of the density in the �uid plane immediately

above the crystal surface, as a function of position. This requires tracking the step front and

averaging in a co-moving frame and so introduces some uncertainties. Nevertheless, we see a

clear minimum at the step face but it is quite small - only about 2% of the density far from

the step face - which perhaps accounts for the good agreement we �nd between the simple

model given here and the simulations.

Mathematical symbols used in main text

a: the lattice spacing.

β = 1/kBT : the inverse temperature.

ceq: equilibrium concentration in the �uid for a given chemical potential (i.e. with no

crystal present).

c0 : the concentration at the crystal surface.

ccoex: �uid concentration at coexistence with the crystal.

c (z; t) : �uid concentration averaged over x− y planes.

c∗ = ca3: dimensionless concentration.

c: advection velocity.

χ (l; êα): characteristic function for molecule l in solution: it is equal to one if the neighbor

in the direction of êα is unoccupied and zero otherwise.

D: the low-density di�usion constant of the crystal-forming species in solution.

E : any of the possible elementary events in the kMC simulation.
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ε: absolute value of nearest-neighbor bond energy

êα: unit vector in one of the cartesian directions ( α = ±x,±y or ±z).

Eij: energy of surface molecule at position (i, j).

E (S): energy of state S.

Ec (S): Energy of crystal in state S.

γ: liquid-crystal surface tension.

Ht: average height of crystal at time t.

H : Array giving the height of the crystal at each x, y lattice site.

µ: chemical potential of crystal-forming species in solution.

µeq: Chemical potential giving equilibrium with the crystal.

∆µe�: e�ective supersaturation at the crystal surface.

∆µ∗: dimensionless chemical potential.

∆µ = µ−µeq: supersaturation applied at the crystal surface (SOS model) or at the upper

boundary (our model).

M(t): mass of the crystal at time t.

nt (s): number of molecules in the �uid at site s.

nij: number of nearest neighbor bonds of surface molecule at site (i, j ).

N : total number of possible elementary events in the kMC algorithm

NFluid(t): in the kMC model, the number of molecules in the �uid at time t .

Nx : Number of lattice sites in the x-direction (direction of step growth)

Ny : Number of lattice sites in the y-direction (parallel to step face) b Nz : Number of

lattice sites in the z-direction (direction perpindicular to crystal surface)

N : the number of crystal molecules in solution

νjump: attempt frequency of attempted jumps of molecule in solution.

νadd: attempt frequency of molecules entering via the upper boundary.

νdetach: attempt frequency of molecules detaching from surface.

ν∗ = ν/r0: dimensionless frequency.
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ν0: the attempt frequency.

q: parameter characterizing the bias of the jump probabilities to simulate �ow.

r+ij : rate of attachment of molecules at surface site (i, j ).

r−ij : rate of detachment of molecules at surface site (i, j ).

r0: constant used to map rates to probabilities.

rjump: rate of jumps of molecules in solution.

radd (i, j, Nz): rate of molecules entering via the upper boundary at site (i, j).

rdetach (i, j,Hij): rate of crystal surface molecule at site (i, j) detaching from surface.

r (S→ S′): rate of transition from state S to state S′.

r (E): rate of event E occuring.

s (i, j, k): a site in the �uid with coordinates i, j, k.

S = (H,N): speci�cation of the state of the system.

T : the temperature

δt: the time step.

T ∗ = kBT/ε: dimensionless temperature.

v1, v2: constants used to �t step veloctiy to superaturation.

v (c): step velocity as a function of concentration.

v: step velocity.
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