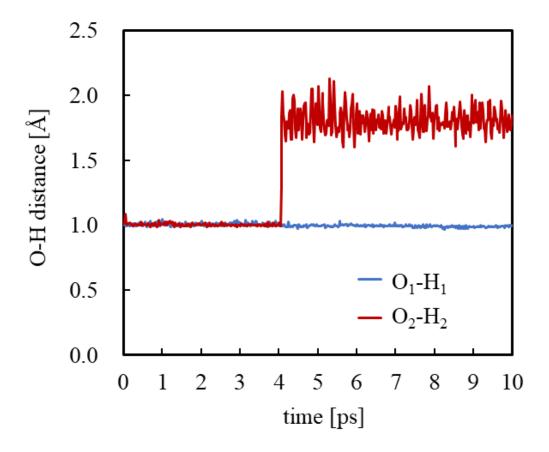
Supporting Information

Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method

Nana Komoto[†], Takeshi Yoshikawa[‡], Yoshifumi Nishimura[‡], Hiromi Nakai^{*,†,‡,§}

[†] Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan [‡] Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

[§] Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan


* Corresponding author. FAX: +81-3-3205-2504,

E-mail address: nakai@waseda.jp (H. Nakai).

URL: http://www.chem.waseda.ac.jp/nakai/ (H. Nakai).

Excited-state molecular dynamics simulation for BP(OH)₂ in gas phase

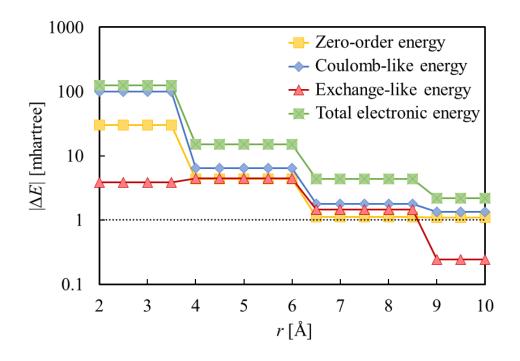

Figures S1 shows the time-course changes for BP(OH)₂ of the distances, $r(O_1-H_1)$, between O₁ and H₁ and $r(O_2-H_2)$ between O₂ and H₂. In the excited state for BP(OH)₂ ingas phase, $r(O_2-H_2)$ greatly increased once at ~4 ps.

Figure S1. Time-course changes of $r(O_1-H_1)$ and $r(O_2-H_2)$ in BP(OH)₂ in gas phase.

Buffer size dependence of ground-state energy

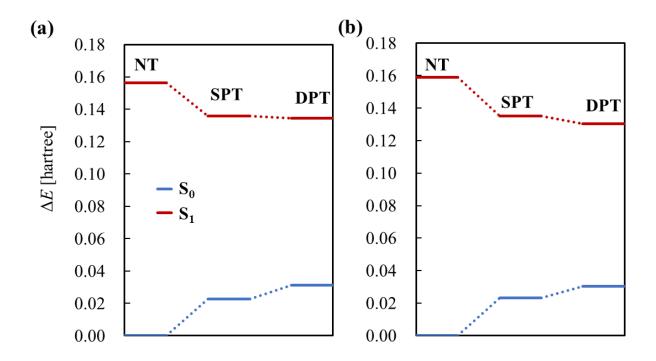

Figure S2 shows the buffer-size dependence of the ground-state energy of 10-acene. One benzene ring was used as a subsystem. Although required buffer size becomes larger, energy error between with DC and conventional methods is decreased by increasing the buffer size.

Figure S2. Dependence of the errors in the total electronic, zero-order Hamiltonian, Coulomb-like, and exchange-like energies, calculated using DC-LCDFTB from the conventional LCDFTB calculations on the buffer size (r) of 10-acene.

Potential energy of BP(OH)₂ in gas phase

The potential energies of NT, SPT, and DPT structures of BP(OH)₂ in gas phase were calculated by LCBLYP/aug-cc-pVDZ and LCDFTB/OB2. Figure S3 shows the energy differences ΔE from the potential energy of NT structure in the S₀ state. The S₀-S₁ energy difference and the energy difference between structures calculated by LCDFTB method provided the good agreement with LCBLYP.

Figure S3. Energy differences ΔE from the potential energy of NT structure in the S₀

state calculated by (a) LCBLYP/aug-cc-pVDZ and (b) LCDFTB/OB2.