Supporting Information

Graphene-Based Modulation on the Growth of Urchin-Like Na₂Ti₃O₇ Microspheres for Photothermally-Enhanced H₂ Generation from Ammonia Borane

Yanan Wu,^a Yibai Sun,^a Wanlin Fu,^a Xiangyu Meng,^a Mingyun Zhu,^a Seeram

Ramakrishna,^b Yunqian Dai,^{a,} *

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing

Jiangsu 211189, P. R. China

^b Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering,

National University of Singapore, Singapore 117574, Singapore

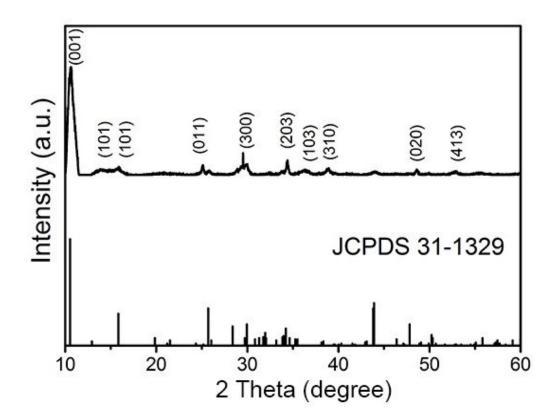


Figure S1. XRD pattern of as-prepared Na₂Ti₃O₇.

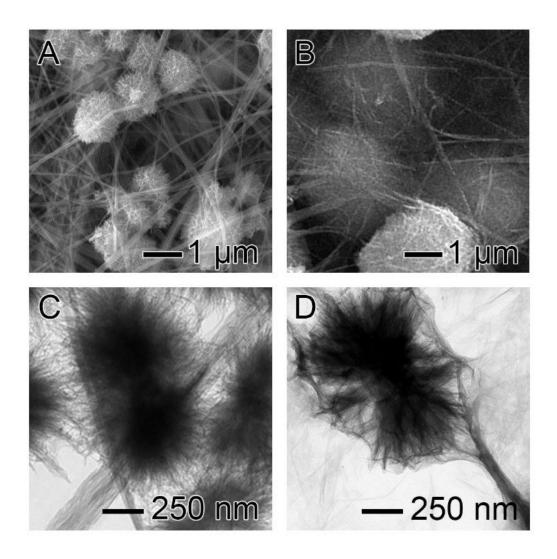


Figure S2. SEM images of (A) $Na_2Ti_3O_7$ (B) RGO/ $Na_2Ti_3O_7$ and TEM images of (C) $Na_2Ti_3O_7$ (D) RGO/ $Na_2Ti_3O_7$ fabricated by hydrothermal reaction for 20 h under 200 °C.

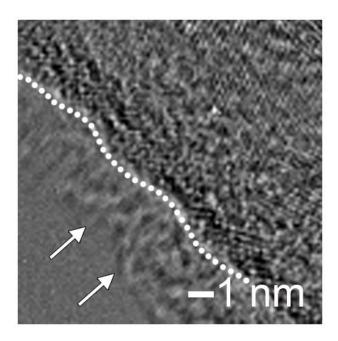
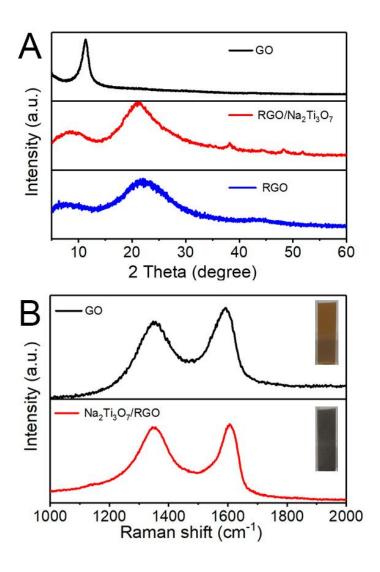



Figure S3. HRTEM images of RGO/Na₂Ti₃O₇. The arrows highlight the RGO sheets.

Figure S4. (A) The XRD patterns of GO, RGO/Na₂Ti₃O₇ and RGO. (B) Raman spectra of GO and RGO/Na₂Ti₃O₇. The insets in B are the photographs of the pristine GO and RGO/Na₂Ti₃O₇ dispersed in water, respectively.

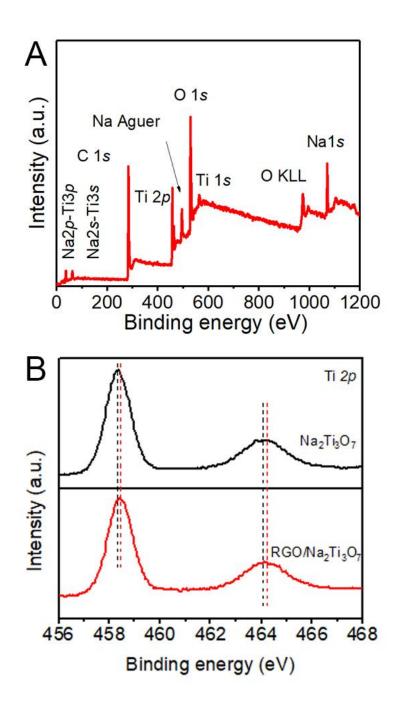
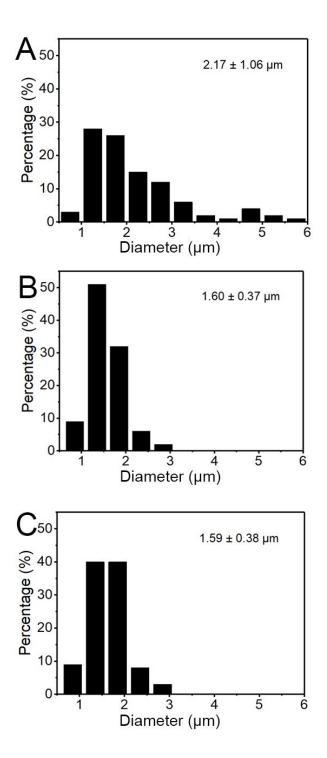
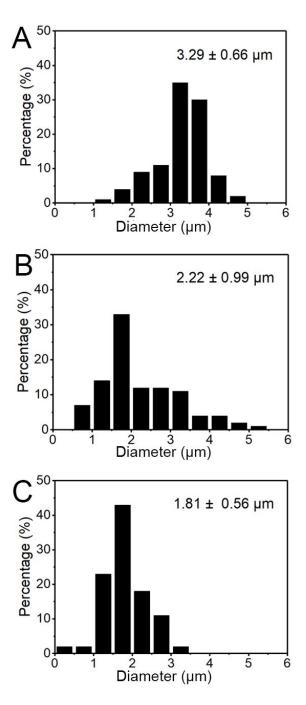




Figure S5. (A) Full and (B) high-resolution Ti 2p XPS spectra of RGO/Na₂Ti₃O₇.

Figure S6. Histogram of diameters of $Na_2Ti_3O_7$ microspheres in RGO/ $Na_2Ti_3O_7$ under 200 °C for 15 h in the presence of GO sheets sonicated for (A) 16, (B) 32, and C) 64 min.

Figure S7. Histogram of diameters of $Na_2Ti_3O_7$ microspheres in RGO/ $Na_2Ti_3O_7$ composites synthesized with (A) 33, (B) 60, (C) 66 wt% of GO under 200 °C for 1 h.

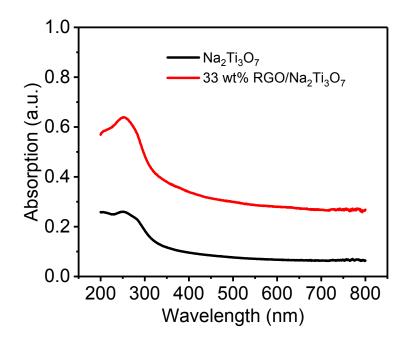
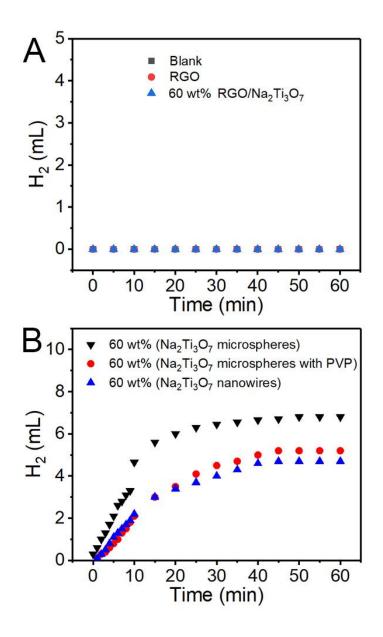



Figure S8. The UV–vis spectra of $Na_2Ti_3O_7$ and $RGO/Na_2Ti_3O_7$ microspheres with 33 wt% of GO.

Sample	J_{st} (µA/cm ²)	Reference
50 wt% RGO/Na ₂ Ti ₃ O ₇	2.31	In this work
N-doped graphene quantum dots	0.400	1
Au/TiO ₂	<0.900	2
$Fe_3O_4/g-C_3N_4$	< 0.400	3
graphene-TiO ₂	<0.120	4

 Table S1. Comparison of the photoelectrochemical performance with similar

 photoelectrochemical systems.

Figure S9. (A) Time course of H_2 evolution from AB without using catalyst or using 60 wt% RGO/Na₂Ti₃O₇ and RGO without visible-light irradiation. (B) Time course of H_2 evolution from AB using different catalyst under visible light irradiation. The RGO/Na₂Ti₃O₇ nanowires is a mixture of RGO and Na₂Ti₃O₇ nanowires with the same mass ratio of 3: 2 as that of RGO/Na₂Ti₃O₇ microspheres.

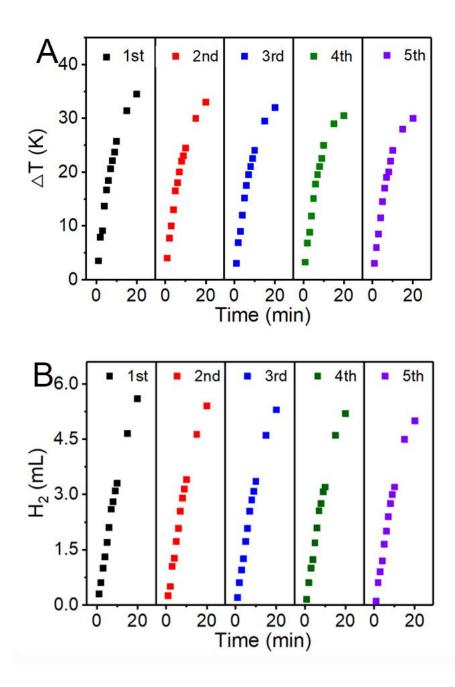


Figure S10. Stability of (A) temperature variation, and (B) time course of H_2 evolution from AB using 60 wt% RGO/Na₂Ti₃O₇ as catalyst.

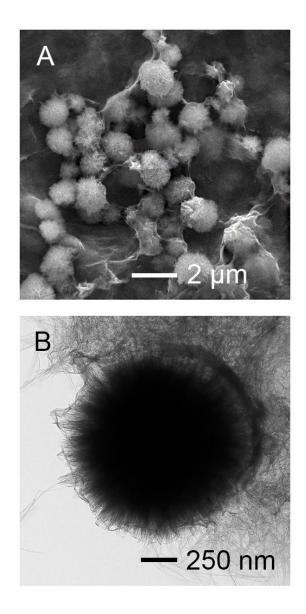


Figure S11. (A) SEM and (B) TEM images of 60 wt% $RGO/Na_2Ti_3O_7$ after the catalytic reaction.

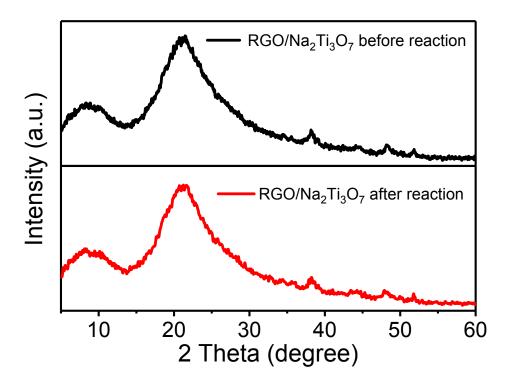


Figure S12. The XRD patterns of the $RGO/Na_2Ti_3O_7$ before and after catalytic reaction.

Reference

- Dai, Y.; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun, Y.; Zeng, J. Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. *Part. Part. Syst. Charact.* 2014, *31* (5), 597–604.
- (2) Jung, H.; Song, J.; Lee, S.; Lee, Y. W.; Wi, D. H.; Goo, B. S.; Han, S. W. Hierarchical Metal-Semiconductor-Graphene Ternary Heteronanostructures for Plasmon-Enhanced Wide-Range Visible-Light Photocatalysis. *J. Mater. Chem. A* 2019, 7 (26), 15831–15840.
- (3) Zeng, D.; Zhou, T.; Ong, W. J.; Wu, M.; Duan, X.; Xu, W.; Chen, Y.; Zhu, Y. A.; Peng, D. L. Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C₃N₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. *ACS Appl. Mater. Interfaces* **2019**, *11* (6), 5651–5660.
- (4) Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. Engineering the Unique 2D Mat of Graphene to Achieve Graphene-TiO₂ Nanocomposite for Photocatalytic Selective Transformation: What Advantage does Graphene Have over Its Forebear Carbon Nanotube? *ACS Nano* 2011, 5 (9), 7426–7435.