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FTIR measurement 

Fourier transform infrared spectroscopy (FTIR) measurements were carried out in a home-made in 

situ cell. A self-supported disc comprising mixture of In2O3 and proton-type CHA (In2O3/CHA, 40 

mg) was dehydrated under He flow at 773 K and then treated with H2 or 10% H2/He. For 

measurement of In hydrides, the obtained sample was kept at 773 K under vacuum for 2 h and a 

background spectrum was obtained below 153 K by cooling the cell using liquid N2. Next, H2 flow 

was introduced to the sample that was kept under H2 at 773 K for 2 h. Further, the temperature was 

decreased to below 153 K and the FTIR spectra were recorded (JASCO FT/IR-4600 equipped with a 

mercury cadmium telluride (MCT) detector). The reaction of In hydrides with ethylene was carried 

out by treating In-CHA(H2) with 10% C2H4/He at 473 K while the in situ formation of In hydrides 

through the reaction of In-CHA with ethane was examined at 773 K under 100% C2H6. 

For NH3 adsorption, temperature was decreased to 373 K after the treatment of the disk of In2O3/CHA 

under 10% H2/He flow and then the flow was changed from He to purge H2. A background spectrum 

under He was obtained followed by introducing NH3 (1%) to the sample, purging with He, and 

monitoring the peak derived from adsorbed NH3 at 373 K. 

 

H−D exchange reaction 

For the FTIR measurement, the reactions were carried out using the home-made in situ cell described 

above. Mass spectroscopic observations of a H−D exchange reaction were conducted in a fixed-bed 

continuous flow system as follows. A powder of In2O3/CHA (0.2 g) was treated under 40 mL/min of 

5% H2/N2 at 773 K to prepare in situ In-CHA(H2). Next, the temperature decreased to 313 K under 40 

mL/min of 5% H2/N2 flow, and subsequently, the gas was switched to N2 for at least 1 h to purge H2 

from the gas phase. After the pre-treatment, the H−D exchange reaction of In-CHA(H2) with D2 was 

investigated under 40 mL/min of 5% D2/N2 flow with increase in temperature from 313 K to 473 K. 

The gas-phase products were analyzed by mass spectroscopy (BELmass, MicrotracBEL). The reverse 

reaction (In-CHA(D2) with H2) was examined in a similar way using the in situ prepared In-CHA(D2) 

and 40 mL/min of 5% H2/N2 flow. 

 

XAFS measurement 

A In K-edge X-ray absorption fine structure (XAFS) measurement was conducted in transmission 

mode in a BL14B2 station attached to a Si(311) monochromator at SPring-8 (JASRI), Japan (Proposal 

Nos. 2019A1614 and 2019B1686). A flow reaction system containing a flow-type cell was used for in 

situ XAFS measurements. A disc of In-CHA was prepared using a self-supported disc of In2O3/CHA 

under 5% H2/He flow at 773 K in a flow type quartz cell with gas mixture system using mass flow 

controllers. After the preparation, the temperature was decreased to room temperature (ca. 298 K) 

followed by the XAFS measurement. 
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Computational details 

Density functional theory calculations were performed using the Vienna ab initio simulation package 

(VASP) 1,2 with a periodic boundary condition under a Kohn–Sham formulation 3,4. All atoms were 

allowed to fully relax during calculations. Projected augmented wave method 5,6 was applied to 

describe the core-electron interactions and plane wave basis set was limited to cut-off energy of 450 

eV. The forces on atoms were minimized to less than 0.03 eV/Å. An electron-exchange correlation 

was considered using the generalized gradient approximated Perdew–Burke–Ernzerhof (GGA–PBE) 

functional 7. The Γ point was used for Brillouin zone sampling. Van der Waals (vdW) dispersion 

corrections were included in all calculations by the semi-empirical Grimme’s D3 method 8,9. the 

lattice constants of CHA zeolite were fixed at values given in the International Zeolite Association 

database (a = b = 13.675 Å, c = 14.767 Å, α = β = 90.0°, and γ = 120°) 10. For vibration calculation, 

all atoms except In hydrides were fixed. The conjugate gradient method was used to optimize 

intermediate structures during the climbing-image nudge elastic band (CI–NEB) calculations as 

implemented in VTST-Tools 11. For CI–NEB calculations, the spring constant between adjacent 

images was set to 5.0 eV/Å2; moreover, the calculations were considered converged when the 

maximum forces on all atoms were less than 0.05 eV Å−1. The Gibbs free energy of each species was 

calculated using vibrational frequency analysis based on harmonic normal mode approximation by the 

finite difference method in VASP. A limited set of atoms that are determined as non-zeolite 

framework atoms (indium, carbon, and hydrogen atoms) in the unit cell, were used to calculate 

vibrational frequencies. The vibrational contribution to the free energy for each structure at 873.15 K 

was calculated based on the calculated frequencies. Neglecting the spurious frequencies contributes to 

the enthalpy and entropy; hence, spurious frequencies under 100 cm−1 were replaced with 50 cm−1 for 

all the structures to give consistent results 12. Ethane, ethylene, and hydrogen in gas phase were 

calculated using ideal gas approximation at 873.15 K and their transitional and rotational 

contributions to the free energy were evaluated at partial pressures of 0.02, 2 × 10−4, and 2 × 10−4 atm, 

respectively. 

 

Dehydrogenation of ethane 

Nonoxidative dehydrogenation of ethane was performed in a fixed-bed continuous-flow system at 933 

K. The catalyst was prepared in situ by treatment of a 0.1 g of In2O3/CHA under 50 mL of 10% H2/He 

flow at 773 K for 30 min to promote RRSIE followed by He purge for 1 h before dehydrogenation. 

Ga- and Zn-exchanged zeolites were prepared through the impregnation of the corresponding nitrate 

precursors (Ga(NO3)3•9H2O and Zn(NO3)2•6H2O) to CHA (Tosoh, NH4
+-type, SiO2/Al2O3 = 22.3) or 

ZSM5 (Tosoh, NH4
+-type, SiO2/Al2O3 = 22) followed by calcination under air at 773 K. Before the 

reaction, the catalysts were treated under a H2/He flow at 993 K for Ga or at 773 K for Zn in the 

reactor. PtSn/Al2O3 and PtGa/Al2O3 were prepared by a conventional impregnation method of H2PtCl6 
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and (NH4)2SnCl6 or Ga(NO3)3 to γ-Al2O3 (prepared by calcination of boehmite (γ-AlOOH, SASOL 

Chemicals) at 1173 K for 3 h) followed by in situ reduction of the obtained powder under a H2/He 

flow at 973 K for 1 h. For all the dehydrogenation experiments, the gas from the reactor was analyzed 

by Shimadzu GC-14B with a SHINCARBON ST column and gas sampler (GS5100). The conversion, 

selectivity, and carbon balance were calculated as follows: 

 

Conv. [%] =
[𝑒𝑡ℎ𝑎𝑛𝑒]𝑖𝑛𝑖𝑡 − [𝑒𝑡ℎ𝑎𝑛𝑒]

[𝑒𝑡ℎ𝑎𝑛𝑒]𝑖𝑛𝑖𝑡
× 100 

Selec. [%] =
[𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒]

[𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒] + [𝑚𝑒𝑡ℎ𝑎𝑛𝑒]
× 100 

Carbon balance [%] =
([𝑒𝑡ℎ𝑎𝑛𝑒] + [𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒] + [𝑚𝑒𝑡ℎ𝑎𝑛𝑒])

[𝑒𝑡ℎ𝑎𝑛𝑒]𝑖𝑛𝑖𝑡
× 100 

 

For reuse experiment, the In-CHA after 90 h reaction was treated with 50 mL of 5% O2/He at 873 K 

for 90 min in the reactor to calcine the coke and then treated with 50 mL of 10% H2/He followed by 

He purge for 1 h. The dehydrogenation was performed in the same reaction conditions for 20 h. To 

obtain the relationship between conversion and selectivity, the reaction was carried out at 773–893 K 

for Ga-ZSM-5 and PtSn/Al2O3 and at 913–953 K, respectively. 

The kinetic studies were carried out under the following conditions. 

•TOF dependency on p(H2) for In-CHA (In/Al = 0.8) 

p(H2) = 0.02–0.08, p(C2H6) = 0.02, balanced with He (total flow rate: 50 mL/min), 933 K 

•TOF dependency on p(C2H6) for In-CHA (In/Al = 0.8) 

p(H2) = 0.02, p(C2H6) = 0.02–0.08, balanced with He (total flow rate: 50 mL/min), 933 K 

•TOF dependency on p(H2) for Ga-CHA (Ga/Al = 0.8) 

p(H2) = 0.02–0.08, p(C2H6) = 0.04, balanced with He (total flow rate: 50 mL/min), 913 K 

•TOF dependency on p(C2H6) for Ga-CHA (Ga/Al = 0.8) 

p(H2) = 0.04, p(C2H6) = 0.02−0.08, balanced with He (total flow rate: 50 mL/min), 913 K 

•M/Al effect on formation rate for In-CHA 

p(C2H6) = 0.02, balanced with He (total flow rate: 50 mL/min), 933 K 

•M/Al effect on formation rate for Ga-CHA 

p(C2H6) = 0.04, balanced with He (total flow rate: 50 mL/min), 913 K 

•Eyring plot for In-CHA (In/Al = 0.8) 

p(C2H6) = 0.02, balanced with He (total flow rate: 50 mL/min), 873–933 K 

•Eyring plot for Ga-CHA (Ga/Al = 0.8) 

p(C2H6) = 0.04, balanced with He (total flow rate: 50 mL/min), 873–933 K 
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Temperature-programmed oxidation (TPO) measurement 

TPO measurement was performed using BELCAT II (MicrotracBEL). After the 2 h reaction, 40 mg 

of catalyst was used for the TPO experiment. The catalyst was pretreated at 423 K for 30 min under 

He atmosphere. The gas flow was switched to 50% O2/He (40 mLmin−1) and then the temperature was 

increased to 1073 K at 5 K/min. During the reaction, the CO2 generated through coke oxidation (m/e 

= 44) was measured by mass spectroscopy (BELmass, MicrotracBEL). 
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Figures 

 

 

Figure S1. Mass profiles for m/z = 2, 3, and 4 during the reaction between In-CHA(D2) and H2 

 

 

 

Figure S2. Deconvolution of the bands around 1700–1800 cm−1 in the FTIR spectrum of In-CHA(H2) 
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Figure S3. Enthalpy and free energy for interconversion between Z[InH2] and Z[In] 

 

 

 

Figure S4. XRD pattern of the fresh In-CHA, precursor material In2O3/CHA, In-CHA used for the 

dehydrogenation, and H-CHA 
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Figure S5. FTIR spectra of NH3 adsorption experiment for In-CHA with different In/Al ratio (left) 

and relationship between the degree of decrease in peak area around 1740 cm−1 (A1740cm
−1) and In/Al 

ratio (right) 

 

Figure S6. FTIR spectra of the In-CHA after treatment with ethane at 773 K 

 

Figure S7. In situ XAFS spectra of In-CHA in the presence of H2 (773 K) or ethane (933 K) 
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