A non-concentration-quenching phosphor $\mathrm{Ca}_{3} \mathrm{Eu}_{2} \mathrm{~B}_{4} \mathrm{O}_{12}$ for

 WLED applicationGui-Hua Lia ${ }^{\text {a }}$, Nian Yang ${ }^{\text {a }}$, Jing Zhang ${ }^{\text {a, }}$, Jia-Yong Sic ${ }^{\text {c }}$, Zheng-Liang
Wang ${ }^{\text {d }}$, Ge-Mei Caia ${ }^{\text {a,* }}$, and Xiao-Jun Wang ${ }^{\mathrm{e}, * *}$
${ }^{a}$ School of Materials Science and Engineering, Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, 410083, P.R. China
${ }^{b}$ School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China.
${ }^{c}$ College of Mechanical \& Electrical Engineering, Central South University of Forestry \& Technology, Changsha 410004, P.R. China
${ }^{d}$ Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, School of Chemistry \& Environment, Yunnan Minzu University, Kunming, 650500, P.R. China ${ }^{e}$ Department of Physics, Georgia Southern University, Statesboro, G

[^0]Table S1 Crystallographic data, structure refinement parameters of CYBO: $0.15 \mathrm{Eu}^{3+}$

Formula	$\mathrm{Ca}_{3} \mathrm{Y}_{1.85} \mathrm{Eu}_{0.15} \mathrm{~B}_{4} \mathrm{O}_{12}$
Crystal system	orthorhombic
Space group	$\mathrm{Pn} \mathrm{ma}(62)$
$\mathrm{a}, \mathrm{b}, \mathrm{c}(\AA)$	$7.1644(4), 15.4729(9), 8.5573(5)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$90,90,90$
Volume $\left(\AA^{3}\right)$	$948.61(9)$
$\mathrm{Z}, \rho_{\text {calc. }}\left(\mathrm{g} \mathrm{cm} \mathrm{cm}^{-3}\right)$	$4,3.7966$
Sample	Multi-crystal powder
Radiation type	$\mathrm{Cu} \mathrm{K} \alpha$
2θ range $\left({ }^{\circ}\right)$	$5.0080-129.9750$
Step size	0.017
No. of refined parameters	124
$\mathrm{R}_{\mathrm{B}}(\%)$	7.48
$\mathrm{R}_{\mathrm{P}}(\%)$	2.53
$\mathrm{R}_{\mathrm{WP}}(\%)$	3.66
S	2.18

Table S2 Atomic coordinate, thermal vibration parameter, Wyckoff position, and occupancy for CYBO:
$0.15 \mathrm{Eu}^{3+}$

Atom	x / a	y / b	z / c	Uiso	Site.	Occ
Ca1	$0.3237(4)$	0.25	$0.5326(3)$	0.0014	4 c	0.252
Y1	$0.3237(4)$	0.25	$0.5326(3)$	0.0014	4 c	0.692
Eu1	$0.3237(4)$	0.25	$0.5326(3)$	0.0014	4 c	0.056
Y2	$0.1939(5)$	$0.1277(2)$	$0.1554(4)$	0.0038	8 d	0.139
Eu2	$0.1939(5)$	$0.1277(2)$	$0.1554(4)$	0.0038	8 d	0.011
Ca2	$0.1939(5)$	$0.1277(2)$	$0.1554(4)$	0.0038	8 d	0.850
Y3	$0.4792(4)$	$0.5838(2)$	$0.1757(3)$	0.0045	8 d	0.440
Eu3	$0.4792(4)$	$0.5838(2)$	$0.1757(3)$	0.0045	8 d	0.036
Ca3	$0.4792(4)$	$0.5838(2)$	$0.1757(3)$	0.0045	8 d	0.524
B1	0.4900	0.25	0.2500	0.0063	4 c	1
B2	0.2770	0.75	0.3560	0.0063	4 c	1
B3	0.3280	0.4560	0.4510	0.0063	$8 d$	1
O1	$0.5452(1)$	0.25	$0.0704(1)$	0.0063	$8 d$	1
O2	$0.3495(2)$	0.25	$0.2483(2)$	0.0063	4 c	1
O3	$0.6737(2)$	0.25	$0.5012(2)$	0.0063	4 c	1
O4	$0.7659(2)$	$0.6803(5)$	$0.2265(1)$	0.0063	$8 d$	1
O5	$0.6052(1)$	$0.5907(7)$	$0.4543(1)$	0.0063	$8 d$	1
	$0.2825(1)$	$0.4776(6)$	$0.9907(1)$	0.0063	$8 d$	1
	$0.3661(1)$	$0.4671(7)$	$0.2943(1)$	0.0063	$8 d$	1

Table S3 Bond distance and bond angle for CYBO: $0.15 \mathrm{Eu}^{3+}$

Bond		Symmetry Operation	Length (\AA)	
Y1\|Ca1	Eu1	O4	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	2.4134(3)
	O4	$1-\mathrm{x},-0.5+\mathrm{y}, 1-\mathrm{z}$	2.4134(3)	
	O2	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.4398 (3)	
	O1	-0.5+x, $0.5-\mathrm{y}, 0.5-\mathrm{z}$	2.4674(3)	
	O1	-0.5+x, y, 0.5-z	2.4674(3)	
	O5	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	$2.5195(1)$	
	O5	$1-\mathrm{x},-0.5+\mathrm{y}, 1-\mathrm{z}$	2.5195(1)	
	O3	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.5219(3)	
	Average		2.4365	
$\mathrm{Ca} 2\|\mathrm{Y} 2\| \mathrm{Eu} 2$	O6	$\mathrm{x}, 0.5-\mathrm{y},-1+\mathrm{z}$	$2.2460(3)$	
	O7	$\mathrm{x}, 0.5-\mathrm{y}, \mathrm{z}$	$2.2553(4)$	
	O3	-0.5+x, $0.5-\mathrm{y}, 0.5-\mathrm{z}$	$2.3230(3)$	
	O2	x, y, z	2.3354(3)	
	O1	-0.5+x, $0.5-\mathrm{y}, 0.5-\mathrm{z}$	$2.6811(4)$	
	O1	$\mathrm{x}, 0.5-\mathrm{y}, \mathrm{z}$	$2.7219(4)$	
	07	-0.5+x, $0.5-\mathrm{y}, 0.5-\mathrm{z}$	$2.8025(4)$	
	O5	$0.5-\mathrm{x},-0.5+\mathrm{y},-0.5+\mathrm{z}$	2.8071(4)	
	Average		2.5215	
$\mathrm{Ca} 3\|\mathrm{Y} 3\| \mathrm{Eu} 3$	07	x, y, z	2.2242 (3)	
	O4	$-0.5+x, y, 0.5-z$	2.2943 (3)	
	O6	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	$2.4176(3)$	
	O1	$1-x, 1-y,-z$	$2.5450(3)$	
	O5	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.5514(3)	
	O4	x, y, z	2.5762(3)	
	O6	$\mathrm{x}, \mathrm{y},-1+\mathrm{z}$	$2.6816(3)$	
	Average		2.4701	
B1	O1	$\mathrm{x}, 0.5-\mathrm{y}, \mathrm{z}$	1.3056(9)	
	O1	x, y, z	$1.3056(9)$	
	O2	x, y, z	$1.4584(1)$	
	Average		1.3565	
B2	O3	$1-\mathrm{x}, 0.5+\mathrm{y}, 1-\mathrm{z}$	1.2721(2)	
	O4	$-0.5+x, y, 0.5-z$	$1.2921(8)$	
	O4	-0.5+x, 1.5-y, 0.5-z	$1.2921(8)$	
	Average		1.2854	
B3	O5	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	$1.1866(1)$	
	O6	$0.5-\mathrm{x}, 1-\mathrm{y},-0.5+\mathrm{z}$	1.3408(9)	
	07	x, y, z	1.3790(1)	
	Average		1.3021	

Table $\mathbf{S 4}$ Bond distance and bond angle for $\mathrm{Ca}_{3} \mathrm{Eu}_{2} \mathrm{~B}_{4} \mathrm{O}_{12}$

Bond		Symmetry Operation	Length (\AA)
Eu1\|Ca1	O2	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.3304(8)
	O4	$1-\mathrm{x},-0.5+\mathrm{y}, 1-\mathrm{z}$	2.4167(7)
	O4	$1-x, 1-y, 1-z$	2.4167(7)
	O3	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.4279(1)
	O5	$1-\mathrm{x},-0.5+\mathrm{y}, 1-\mathrm{z}$	$2.4430(7)$
	O5	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	2.4430(7)
	O1	$-0.5+x, y, 0.5-\mathrm{z}$	2.4521(7)
	O1	-0.5+x, 0.5-y, 0.5-z	2.4521(7)
	Average		2.4215
Ca2\|Eu2	O6	$\mathrm{x}, 0.5-\mathrm{y},-1+\mathrm{z}$	2.3054(7)
	07	$\mathrm{x}, 0.5-\mathrm{y}, \mathrm{z}$	$2.3572(7)$
	O3	$-0.5+x, 0.5-y, 0.5-z$	2.371(5)
	O2	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$2.4855(6)$
	O7	$-0.5+x, 0.5-y, 0.5-z$	2.5408(8)
	O1	$-0.5+x, 0.5-y, 0.5-z$	$2.6927(7)$
	O1	x, $0.5-\mathrm{y}$, z	2.7869(8)
	O5	$0.5-\mathrm{x},-0.5+\mathrm{y},-0.5+\mathrm{z}$	2.8507(7)
	Average		2.5504
$\mathrm{Ca3} 3 \mathrm{Eu} 3$	07	x, y, z	2.3594(7)
	O4	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	2.3981(7)
	O6	$1-x, 1-y, 1-z$	2.4030(7)
	O4	-0.5+x, y, 0.5-z	2.4102(7)
	O5	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$2.5217(7)$
	O1	$1-x, 1-y,-z$	2.5774(6)
	O6	$x, y,-1+z$	2.6092(7)
	Average		2.4685
B1	O2	x, y, z	$1.3609(9)$
	O1	x, 0.5-y, z	$1.3685(6)$
	O1	x, y, z	1.3685(6)
Average			
B2	O3	1-x, 0.5+y, 1-z	1.3451(8)
	O4	$-0.5+x, 1.5-y, 0.5-z$	1.3560(6)
	O4	$-0.5+\mathrm{x}, \mathrm{y}, 0.5-\mathrm{z}$	1.3560(6)
Average			
B3	O6	0.5-x, 1-y, -0.5+z	1.3183(6)
	O5	$1-x, 1-y, 1-z$	1.3222(7)
	O7	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	$1.3395(7)$
	Average		

- Details for the calculation of quantum yield experiment

Absorption rate and quantum yield are calculated as follows:

$$
\begin{align*}
& A=\frac{\left(L_{b}-L_{c}\right)}{L_{b}} \tag{1}\\
& \emptyset_{f}=\frac{\left[E_{c}-(1-A) \cdot E_{b}\right]}{L_{b} \cdot A} \tag{2}
\end{align*}
$$

Where A is the absorbance of the sample calculated by integrating the emission spectrum intensity; L_{b} is the scattering intensity of the surface of the integrating sphere obtained when the sample is not placed in the optical path; L_{c} is the scattering intensity of the surface of the integrating sphere when the detected sample is present; Φ_{f} is the quantum yield of the calculated sample; E_{b} is the luminescence intensity detected at the time of the sample not placed in the optical path; E_{c} is the emission intensity when the detected sample is present; L_{a} is the scattering of the integrating sphere itself.

Here, since the excitation light and the phosphor are not in the same optical path, L_{b} is equivalent to the scattering of the surface of the integrating sphere when no sample is placed. In this sense, L_{b} represents the scattering of the integrating sphere itself, i.e. $L_{a}=L_{b}$.

Quantum yield, which is commonly considered as the internal quantum efficiency, according to its physical definition:

QY $=$ (Photons • Emitted) / (Photons • Absorbed)
It means that the single "molecule" in the compound emits a photon after being excited by the light source, it is not "total emission photon/total absorption photon" in number, although in many cases the two are approximately equal. Combining the analysis of the emission spectrum intensity before, we have realized that the quantum yield is not equal to the emission spectrum intensity, that is, high quantum yield does not mean that the luminescence intensity is high, even though they are similar in some cases and have a consistent pattern. The definition of quantum yield refers to a single compound or molecule. Therefore, if the number of defects is large, the integrity of a single compound molecule is "destroyed", and the quantum yield measured at this
time has not yet reached a maximum value, even if the luminescence intensity is the best among a given series of compounds. This also shows that the quantum yield is positively correlated with the crystallinity to a certain extent, which explains why the quantum yield can not only evaluate the sensitivity and interference degree of the fluorescent material to be measured, but also evaluate the purity of the material.

[^0]: * The corresponding author. E-mail address: caigemei@csu.edu.cn (G.M. Cai).
 ** The secondcorresponding author. E-mailaddress: xwang@georgiasouthern.edu (X.J. Wang).

