Supporting Information to: Structural Investigations of $MA_{1-x}DMA_xPbI_3$ mixed-cation perovskites Wouter M.J. Franssen, Cathy M.M. van Heumen, and Arno P.M. Kentgens Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands ## Table of contents - Figure S1: Room temperature crystal structure of MAPbI₃. - Figure S2: Room temperature crystal structure of DMAPbI₃. - Figure S3: ¹H saturation recovery T₁ measurement of MAPbI₃. - Figure S4: ¹³C saturation recovery T₁ measurement of MAPbI₃. - Figure S5: ¹H saturation recovery T₁ measurement of DMAPbI₃. - Figure S6: ¹³C saturation recovery T₁ measurement of DMAPbI₃. - Figure S7: ²⁰⁷Pb saturation recovery T₁ measurement of DMAPbI₃. - Figure S8: ¹³C saturation recovery T₁ measurement of DMA in MAPbI₃. - Figure S9: ²⁰⁷Pb saturation recovery T₁ measurement of the 95:5 sample. - Figure S10: ¹⁴N MAS spectra of MAPbI₃ (100:0 sample) at various temperatures. - Figure S11: Static ¹⁴N spectra of (DMA:MA)PbI₃ (95:5 sample) at various temperatures. - Figure S12: Static ¹⁴N spectra of (DMA:MA)PbI₃ (90:10 sample) at various temperatures. - Figure S13: Static ¹⁴N spectra of (DMA:MA)PbI₃ (80:20 sample) at various temperatures. - Figure S14: ¹⁴N saturation recovery T₁ measurement of the MA cation in the 80:20 sample. - Figure S15: 14 N saturation recovery T_1 measurement of the DMA cation in the 80:20 sample. **Figure S1:** Room temperature crystal structure of MAPbI₃. Figure S2: Room temperature crystal structure of $DMAPbI_3$. Figure S3: 1 H saturation recovery T_{1} measurement of MAPbI $_{3}$. Measured at 20 T and 22 kHz MAS. **Figure S4:** 13 C saturation recovery T_1 measurement of MAPbI $_3$. Measured at 20 T, 80 kHz 1 H decoupling, and 22 kHz MAS. Figure S5: 1 H saturation recovery T_{1} measurement of DMAPbI $_{3}$. Measured at 20 T and 20 kHz MAS. **Figure S6:** 13 C saturation recovery T_1 measurement of DMAPbI₃. Measured at 20 T, 80 kHz 1 H decoupling, and 20 kHz MAS. **Figure S7:** 207 Pb saturation recovery T_1 measurement of DMAPbI $_3$. Measured at 20 T and using no MAS (static). Figure S8: 13 C saturation recovery T_1 measurement of DMA in MAPbI $_3$. Measured at 20 T, 80 kHz 1 H decoupling, and 17.5 kHz MAS. **Figure S9:** 207 Pb saturation recovery T_1 measurement of the 95:5 sample. Measured at 20 T and using no MAS (static). ## 100:0 14N MAS VT **Figure S10:** ¹⁴N MAS spectra of MAPbI₃ (100:0 sample) at various temperatures (°C), measured at 9.4 T and using 9 kHz MAS. The integrals of the sidebands have been fit (assuming $\eta = 0$) to obtain the C_Q as a function of temperature. Based on this value, the FWHM of the static line width has been estimated, using the distance between the maxima of the powder pattern. **Figure S11:** Static 14 N spectra of (DMA:MA)PbI $_3$ (95:5 sample) at various temperatures (°C), measured at 20 T. **Figure S12:** Static 14 N spectra of (DMA:MA)PbI $_3$ (90:10 sample) at various temperatures (°C), measured at 20 T. **Figure S13:** Static 14 N spectra of (DMA:MA)PbI $_3$ (80:20 sample) at various temperatures (°C), measured at 20 T. **Figure S14:** 14 N saturation recovery T_1 measurement of the MA cation in the 80:20 sample, used for establishing the reorientation time. The full curve shows the fit. **Figure S15:** 14 N saturation recovery T_1 measurement of the DMA cation in the 80:20 sample, used for establishing the reorientation time. The full curve shows the fit.