Supporting Information

Activating Titanium Dioxide as a New Efficient Electrocatalyst: From Theory to Experiment

Bowen Ren,[†] Qiuyan Jin,[†] Yinwei Li,[‡] Yan Li,[†]* Hao Cui[†]* and Chengxin Wang[†]*

[†]State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China.

[‡]School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

*Corresponding author: Fax: +86-20-8411-3901; E-mail: liyan266@mail.sysu.edu.cn; cuihao3@mail.sysu.edu.cn; wchengx@mail.sysu.edu.cn;

Figure S1. Schematic models with H* adsorbed on the surfaces of R-TiO₂. Color code: Ti: blue; O: red; H*: white.

Figure S2. Optical photograph of bare Cu(OH)₂ NW/CF (left), CuO NW/CF (middle), and Cu-A-TiO₂ (right).

Figure S3. XRD patterns of CuO NW/CF, Cu-A-TiO₂ and copper foam. There is no changes in XRD diffraction peak could be observed after TiO_2 deposition.

Figure S4. TEM image of CuO NW/CF.

Figure S5. Cu LMM Auger spectra for CuO NW/CF and Cu-A-TiO₂.

Figure S6. Exchange current densities for as-synthesized catalysts in 1 M KOH for HER, which were calculated from Tafel plots by extrapolation method.

Figure S7. a) Cu 2p spectra of Cu-A-TiO₂ and A-TiO₂(Al). b) Cu 3p-Al 2p spectra of A-TiO₂(Al).

Figure S8. a) iR-corrected polarization curves of Cu-A-TiO₂ and A-TiO₂(Al) at 2 mV s⁻¹ in 1 M KOH. b) Electrochemical impedance spectra of Cu-A-TiO₂ and A-TiO₂(Al) with overpotential of 150 mV.

Figure S9. SEM images of Cu-A-TiO₂ after long-term durability test in a,b) 1 M KOH and c,d) 1 M PBS.

Figure S10. XPS Spectra of Cu-A-TiO₂ composite after HER stability test. a) Cu 2p, b) Ti 2p, and c) Cu LMM.

Figure S11. Electrochemical tests in 1 M PBS solution. (a) Polarization curves and (b) Tafel plots of Cu-A-TiO₂ in comparison with CuO NW/CF and CF. (c) The Nyquist plots with overpotential of 150 mV. The inset in (c) shows corresponding equivalent circuit model. (d) The comparison of the experimentally quantified H₂ amount gas with theoretically calculated gas for Cu-A-TiO₂ at 10 mA cm⁻². (e) Stability testing of Cu-A-TiO₂ by chronopotentiometry at a static current density of 10 mA cm⁻².

Figure S12. Schematic models with H_2O molecule adsorbed on the surface of Cu-A-TiO₂. The dotted line shows the hydrogen bond between the H_2O molecule and the surface oxygen atom.

Figure S13. XRD patterns of M-TiO₂ and Ti foil.

Figure S14. a) Low- and b) high-magnification SEM images of M-TiO₂.

Figure S15. Optical photograph of preparation for the working electrode. The as-synthesized sample with copper foam was cut into a specific shape. And electrochemically inert silicon rubber was used to precisely define an active geometric area.

Figure S16. Schematic models of a,b) M-TiO₂ and c,d) R-TiO₂. Color code: Ti: blue; O: red.

Figure S17. Schematic models of a,b) A-TiO₂ and c,d) Cu-A-TiO₂. Color code: Ti: blue; O: red; Cu: dark blue.

Electrocatalysts	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	Tafel solpe (mV dec ⁻¹)	Ref.
Cu-A-TiO ₂	1 M KOH	92	96	This work
OV-high TiO ₂	1 M KOH	~600	187.5	1
TiO _{1.23}	0.5 M H ₂ SO ₄	198	88	2
CFP–FeP HNA	1 M KOH	181	134	3
Fe–O–P NRs	1 M KOH	110	128	4
Cu@NiFe LDH	1 M KOH	116	58.9	5
Co ₃ O ₄ @Ni	1 M KOH	130	53	6
CoS ₂	1 M KOH	193	88	7
NiCoP/CC	1 M KOH	62	68	8
O,Cu–CoP	1 M KOH	72	62	9
MoNi ₄	1 M KOH	15	30	10
NiS ₂ -MoS ₂	1 M KOH	204	65	11
Ni ₂ P-Ni ₃ S ₂ HNAs/NF	1 M KOH	80	65	12
porous MoO ₂	1 M KOH	27	41	13
Co ₂ Mo ₃ O ₈ /Co/NF	1 M KOH	50	49	14
N doped Mo ₂ C nanosheets	1 M KOH	140	65	15
WO ₂ HN/NF	1 M KOH	48	43	16

Table S1. Comparisons of HER performance of Cu-A-TiO₂ with other reported non-noble-metal catalysts.

Tested cathode	Overpotential at $j = 10$	Tafel slope	\dot{J}_0
	mA cm ⁻² (mV)	$(mV dec^{-1})$	(mA cm ⁻²)
Cu-A-TiO ₂	90(2.08)	94(1.52)	0.92(0.11)
20% Pt/C	33(0.57)	31(1.15)	0.88(0.007)
M-TiO ₂	>400	163(3.06)	8.4(0.4)×10 ⁻⁴
CuO NW/CF	236(2.65)	135(1.50)	0.19(0.04)
CF	>400	169(2.33)	4.2(0.25)×10 ⁻³

Table S2. Mean value (standard deviation) of the electrochemical HER kinetic parameters of

tested cathode.

Table S3. Bandgaps (eV) of TiO_2 (rutile and monoclinic phases).

	Rutile	Monoclinic
Our simulations	2.23	3.11
Other simulations	2.2817	3.2217
Experiment	3.03 ¹⁸	3.2019

Table S4. Adsorption energies (eV) of H_2O and H on TiO_2 (rutile and monoclinic phases).

	H ₂ O		Н	
	Rutile	Monoclinic	Rutile	Monoclinic
Our simulations	-0.91	-0.47	-0.42	0.04
Other simulations	-0.93 ²⁰	-0.46 ²¹	-0.55 ²⁰	N/A

Table S5. Adsorption free energies (eV) of $\rm H_2O$ and H on $\rm TiO_2$ (rutile and monoclinic

phases).

	H ₂ O		Н	
	Rutile	Monoclinic	Rutile	Monoclinic
Our simulations	-0.25	0.19	-0.18	0.28

References

- Feng, H.; Xu, Z.; Ren, L.; Liu, C.; Zhuang, J.; Hu, Z.; Xu, X.; Chen, J.; Wang, J.; Hao, W.; Du, Y.; Dou, S. Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catal. 2018, 8 (5), 4288–4293. https://doi.org/10.1021/acscatal.8b00719.
- (2) Swaminathan, J.; Subbiah, R.; Singaram, V. Defect-Rich Metallic Titania (TiO_{1.23})—An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting. ACS Catal. 2016, 6 (4), 2222–2229. https://doi.org/10.1021/acscatal.5b02614.
- (3) Lv, C.; Peng, Z.; Zhao, Y.; Huang, Z.; Zhang, C. The Hierarchical Nanowires Array of Iron Phosphide Integrated on a Carbon Fiber Paper as an Effective Electrocatalyst for Hydrogen Generation. *J Mater Chem A* **2016**, *4* (4), 1454–1460. https://doi.org/10.1039/C5TA08715E.
- (4) Huang, J.; Su, Y.; Zhang, Y.; Wu, W.; Wu, C.; Sun, Y.; Lu, R.; Zou, G.; Li, Y.; Xiong, J. FeOx/FeP Hybrid Nanorods Neutral Hydrogen Evolution Electrocatalysis: Insight into Interface. *J. Mater. Chem. A* 2018, 6 (20), 9467–9472. https://doi.org/10.1039/C8TA02204F.
- (5) Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu Nanowires Shelled with NiFe Layered Double Hydroxide Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting. *Energy Environ. Sci.* 2017, *10* (8), 1820– 1827. https://doi.org/10.1039/C7EE01571B.
- (6) Li, R.; Zhou, D.; Luo, J.; Xu, W.; Li, J.; Li, S.; Cheng, P.; Yuan, D. The Urchin-like Sphere Arrays Co₃O₄ as a Bifunctional Catalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. *J. Power Sources* 2017, 341, 250–256. https://doi.org/10.1016/j.jpowsour.2016.10.096.
- (7) Guan, C.; Liu, X.; Elshahawy, A. M.; Zhang, H.; Wu, H.; Pennycook, S. J.; Wang, J. Metal–Organic Framework Derived Hollow CoS₂ Nanotube Arrays: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. *Nanoscale Horiz.* 2017, *2* (6), 342–348. https://doi.org/10.1039/C7NH00079K.
- (8) Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W. Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catal. 2017, 7 (6), 4131–4137. https://doi.org/10.1021/acscatal.7b00662.
- (9) Xu, K.; Sun, Y.; Sun, Y.; Zhang, Y.; Jia, G.; Zhang, Q.; Gu, L.; Li, S.; Li, Y.; Fan, H. J. Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Lett. 2018, 3 (11), 2750–2756. https://doi.org/10.1021/acsenergylett.8b01893.
- (10) Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Efficient Hydrogen Production on MoNi₄ Electrocatalysts with Fast Water Dissociation Kinetics. *Nat. Commun.* 2017, *8*, 15437. https://doi.org/10.1038/ncomms15437.
- (11) Kuang, P.; Tong, T.; Fan, K.; Yu, J. In Situ Fabrication of Ni–Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide PH Range. *ACS Catal.* **2017**, 7 (9), 6179–6187. https://doi.org/10.1021/acscatal.7b02225.
- (12) Zeng, L.; Sun, K.; Wang, X.; Liu, Y.; Pan, Y.; Liu, Z.; Cao, D.; Song, Y.; Liu, S.; Liu, C. Three-Dimensional-Networked Ni₂P/Ni₃S₂ Heteronanoflake Arrays for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. *Nano Energy* 2018, *51*, 26–36. https://doi.org/10.1016/j.nanoen.2018.06.048.
- (13) Jin, Y.; Wang, H.; Li, J.; Yue, X.; Han, Y.; Shen, P. K.; Cui, Y. Porous MoO₂ Nanosheets as Non-Noble Bifunctional Electrocatalysts for Overall Water Splitting. *Adv. Mater.* 2016, 28 (19), 3785–3790. https://doi.org/10.1002/adma.201506314.

- (14) Ou, Y.; Tian, W.; Liu, L.; Zhang, Y.; Xiao, P. Bimetallic Co₂Mo₃O₈ Suboxides Coupled with Conductive Cobalt Nanowires for Efficient and Durable Hydrogen Evolution in Alkaline Electrolyte. J. Mater. Chem. A 2018, 6 (12), 5217–5228. https://doi.org/10.1039/C7TA11401J.
- (15) Jia, J.; Xiong, T.; Zhao, L.; Wang, F.; Liu, H.; Hu, R.; Zhou, J.; Zhou, W.; Chen, S. Ultrathin N-Doped Mo₂C Nanosheets with Exposed Active Sites as Efficient Electrocatalyst for Hydrogen Evolution Reactions. ACS Nano 2017, 11 (12), 12509–12518. https://doi.org/10.1021/acsnano.7b06607.
- (16) Shu, C.; Kang, S.; Jin, Y.; Yue, X.; Shen, P. K. Bifunctional Porous Non-Precious Metal WO₂ Hexahedral Networks as an Electrocatalyst for Full Water Splitting. J. Mater. Chem. A 2017, 5 (20), 9655–9660. https://doi.org/10.1039/C7TA01527E.
- (17) German, E.; Faccio, R.; Mombrú, A. W. A DFT + U Study on Structural, Electronic, Vibrational and Thermodynamic Properties of TiO₂ Polymorphs and Hydrogen Titanate: Tuning the Hubbard 'U-Term.' *J. Phys. Commun.* 2017, *1* (5), 055006. https://doi.org/10.1088/2399-6528/aa8573.
- (18) Amtout, A.; Leonelli, R. Optical Properties of Rutile near Its Fundamental Band Gap. *Phys Rev B* **1995**, *51* (11), 6842–6851. https://doi.org/10.1103/PhysRevB.51.6842.
- (19) Tang, H.; Berger, H.; Schmid, P. E.; Lévy, F.; Burri, G. Photoluminescence in TiO₂ Anatase Single Crystals. *Solid State Commun.* **1993**, *87* (9), 847–850. https://doi.org/10.1016/0038-1098(93)90427-O.
- (20) Kowalski, P. M.; Meyer, B.; Marx, D. Composition, Structure, and Stability of the Rutile TiO₂ Surface: Oxygen Depletion, Hydroxylation, Hydrogen Migration, and Water Adsorption. *Phys Rev B* 2009, 79 (11), 115410. https://doi.org/10.1103/PhysRevB.79.115410.
- (21) Vittadini, A.; Casarin, M.; Selloni, A. Hydroxylation of TiO₂-B: Insights from Density Functional Calculations. J. Mater. Chem. 2010, 20 (28), 5871–5877. https://doi.org/10.1039/C0JM00422G.