Iron-Catalyzed Intramolecular C-H Amination of α-Azidyl
Amides
Xiaopeng Zhao, Siyu Liang, Xing Fan, Tonghao Yang and Wei Yu* State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University
Lanzhou, 730000, P. R. China
Fax: +86-931-8912582; Email: yuwei@ lzu.edu.cn
Supporting information
Contents Page
General methods S2
General experimental procedures S2-S6
Characterization data S6-S22
Crystallographic data for compound 2a S23-26
References S27
Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S28-S81

General methods

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 300 MHz spectrometer, a Bruker 400 MHz spectrometer or a Bruker 600 MHz spectrometer with CDCl_{3} as the solvent. The chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra were determined with $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ as the internal standard ($\delta=0.00 \mathrm{ppm}$); the chemical shifts in ${ }^{13} \mathrm{C}$ NMR spectra were determined based on the chemical shift of $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$. The high resolution mass spectra (HRMS) were measured on a Bruker micrOTOF QII by ESI. The Fourier transformation infrared spectra (FT-IR) were measured on a NEXUS 670 spectrometer. Melting points (m.p.) were measured on an XT-4 melting point apparatus and are uncorrected. Flash column chromatography was carried out on aluminum oxide (200-300 mesh) or silica gel (200-300 mesh).
FeCl_{2} (99.5%) FeBr_{2} (98.5%) and FeI_{2} (97%) were purchased from Alfa Aesar; Anhydrous acetonitrile (MeCN) and dimethyl sulfoxide (DMSO) were purchased from Energy Chemical and used without further processing. Other solvents were treated before use following the standard procedures.
β-Diketiminate L1 was prepared following the reported procedure. ${ }^{1}$ L2 and L3 were prepared according to literature methods. ${ }^{2}$ Ligand L4 (4,4'-di-tert-butyl-2,2'-dipyridyl) was purchased from Sigma-Aldrich. Ligand L5 (1,10-phenanthroline) was purchased from Acros Organics.

General experimental procedures

General procedure for the preparation of compounds 1a-11:

(a) To a flask charged with amine ($6.0 \mathrm{mmol}, 1.2$ equiv.) dissolved in MeOH (0.5 M), was added dropwise benzaldehydes ($5.0 \mathrm{mmol}, 1.0$ equiv.) The resulting mixture was stirred at room temperature overnight. $\mathrm{NaBH}_{4}(0.38 \mathrm{~g}, 10 \mathrm{mmol}, 2.0$ equiv.) was then added into the mixture in several portions at $0^{\circ} \mathrm{C}$ (immersed in an ice-bath), and the mixture was stirred at this temperature for 6 h . Cold water was then added into the mixture till no bubbles produced, and the mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anhydrous NaSO_{4}. The solvent was then evaporated under reduced pressure on a rotary evaporator, and the crude secondary amine product ($\mathbf{P}-\mathbf{1}$) was directly used for the next step without further purification.

(b) The crude P-1 ($5.0 \mathrm{mmol}, 1.0$ equiv.) and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)(2.1 \mathrm{~mL}, 15 \mathrm{mmol}$, 3.0 equiv.) was dissolved in dry dichloromethane (DCM) (0.5 M) in a 50 mL round bottom flask. After stirring at $0{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 4$-dimethylaminopyridine (DMAP) (30.5 $\mathrm{mg}, 0.25 \mathrm{mmol}, 0.05$ equiv.) was added into the mixture, followed by dropwise addition of the corresponding 2-bromoisobutyryl bromide ($0.74 \mathrm{~mL}, 6 \mathrm{mmol}, 1.2$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The stirring was continued until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with water (10 mL). The aqueous phase was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic phases was treated with 0.5 M HCl solution (10 mL), washed with brine ($3 \times 15 \mathrm{~mL}$), and dried over anhydrous NaSO_{4}. The solution was concentrated under reduced pressure on a rotary evaporator, and the residual was treated with silica gel column chromatography (eluent: petroleum ether (PE) and ethyl acetate (EA)) to afford the pure amide products.
(c) The thus obtained amide ($5.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DMF (0.3 M), and the solution was stirred at $0^{\circ} \mathrm{C}$ (ice-water bath) for $5 \mathrm{~min} . \mathrm{NaN}_{3}(0.98 \mathrm{~g}, 15 \mathrm{mmol}$, 3.0 equiv.) was then added in a few portions, and the reaction mixture was stirred overnight at room temperature. After that, the reaction mixture was poured into water $(15 \mathrm{~mL})$, and the product was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and brine $(3 \times 15 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure on a rotary evaporator. Purification of the crude product by silica gel column chromatography (with PE and EA) afforded the azidation product.
Compounds $\mathbf{1 m}, \mathbf{1 n}, \mathbf{1 p}$ and $\mathbf{1 q}$ were prepared from the corresponding amines following the same procedure.
Preparation of compounds 1 r and 1s:

(a) Cyclopentanecarboxylic acid ($0.48 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.) or cyclobutanecarboxylic acid ($0.54 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in a 25 mL round bottom flask charged with $\mathrm{SOCl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 1 h
at $60^{\circ} \mathrm{C}$. After cooling down to room temperature, $\mathrm{Br}_{2}(0.34 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv.) and a few drops of $\mathrm{HBr}\left(48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ (or PBr_{3}) were added to the solution, and the stirring was continued at $60-70{ }^{\circ} \mathrm{C}$ until the red colour in the flask lightened. The volatile components were then removed by distillation, and the residual was diluted with DCM (5 mL).
(b) The diluted chloride was added dropwise to a 50 mL round bottom flack charged with a DCM solution (10 mL) of dibenzylamine ($0.96 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 3$ equiv.) and DMAP ($30.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.05$ equiv.) at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred till the reaction was complete as indicated by TLC. The mixture was then added into water (10 mL), and the separated aqueous phase was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were treated with 0.5 M HCl solution (10 mL), washed with brine $(3 \times 15 \mathrm{~mL})$, and dried over anhydrous NaSO_{4}. The solution was concentrated under reduced pressure on a rotary evaporator, and the residual was treated with silica gel column chromatography to afford the pure amide products (with PE and EA). The azidation procedure was the same as described above. Compounds $\mathbf{1 t}$ and $\mathbf{1 u}$ were prepared from 2-phenylacetic acid following the same procedure.
Preparation of compound 10 :

Diphenethylamine was prepared according to a literature method. ${ }^{4} \mathbf{1 0}$ was prepared from diphenethylamine following the procedures described above.
Preparation of compound 1w:

N-((2-Phenylcyclopropyl) methyl) aniline was synthesized based on a literature method. ${ }^{5} \mathbf{1 w}$ was prepared from N-((2-phenylcyclopropyl) methyl) aniline following the procedures described above.
Preparation of compound $\mathbf{1 j} \mathbf{j}$:

To a flask charged with amine ($0.55 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.2$ equiv.) dissolved in $\mathrm{CD}_{3} \mathrm{OD}$ (0.5 M), was added dropwise benzaldehyde ($0.51 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1.0$ equiv.) The resulting mixture was stirred at room temperature till the condensation was complete as indicated by TLC. $\mathrm{NaBD}_{4}(0.63 \mathrm{~g}, 15 \mathrm{mmol}, 3.0$ equiv.) was then added into the mixture in several portions at $0{ }^{\circ} \mathrm{C}$ (immersed in an ice-bath), and the mixture was stirred at this temperature for 8 h . Cold water then was added to the mixture till no bubbles produced, and the mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over anhydrous NaSO_{4}. The solvent was then evaporated under reduced pressure on a rotary evaporator, and the crude secondary amine product was directly used for the next step without further purification. Acylation and azidation procedures were the same as described above.
General procedure for the iron-catalyzed $\mathrm{C}-\mathrm{H}$ amination reactions of compounds 1:
Into an oven dried reaction tube equipped with a magnetic stirring bar and a rubber stopper were added $\mathrm{FeCl}_{2}(5.1 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathrm{L} 1(13.4 \mathrm{mg}, 0.04$ $\mathrm{mmol}, 20 \mathrm{~mol} \%)$. The tube was evacuated and backfilled with argon for three times. Then 1 mL of anhydrous acetonitrile was added into the tube with a syringe under argon atmosphere (argon balloon), the mixture was stirred for 30 min at room temperature. Another 1 mL of acetonitrile containing 0.2 mmol of $\mathbf{1}$ (1.0 equiv.) was then added into the reaction tube with a syringe. The mixture was stirred at $100{ }^{\circ} \mathrm{C}$ (oil bath temperature) for 12 h . After the reaction completed, the mixture was cooled to room temperature, and was allowed to pass through a short pad of aluminum oxide, which was washed with ethyl acetate (20 mL). The solution was concentrated under reduced pressure on a rotary evaporator, and the residual was treated with flash column chromatography (with PE and EA) on aluminum oxide to afford the pure product (s).

For the reactions of compounds $\mathbf{1 p}, \mathbf{1 q}, \mathbf{3}$ and $\mathbf{4}$ in the presence of $\mathrm{Boc}_{2} \mathrm{O}, 92 \mathrm{uL}$ of $\mathrm{Boc}_{2} \mathrm{O}$ ($2.4 \mathrm{mmol}, 2.0$ equiv.) was added into the reaction mixture before heating.

Gram scale experiment of 1a:

1.23 g of $\mathbf{1 a}\left(4.0 \mathrm{mmol}, 1.0\right.$ equiv.), 114 mg of $\mathrm{FeCl}_{2}(0.9 \mathrm{mmol} 22 \mathrm{~mol} \%), 267 \mathrm{mg}$ of L1 ($0.8 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 40 mL of anhydrous acetonitrile were used following the procedure described above.
Kinetic isotope experiment with $\mathbf{1 j}$-d:

The value of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ was calculated based on the integrals of methine hydrogen ($\delta=$ 5.98 and the hydrogen $(\delta=1.98)$ of amino group in ${ }^{1} \mathrm{H}$ NMR spectra.

Cautions:

Organic azides are potentially explosive compounds. While we haven't encountered any problems handling them in our experiments, proper precautions must be taken. All the azidation reactions and subsequent workups should be performed in a hood behind a blast shield. After they were prepared, all the organic azides were stored at $-18{ }^{\circ} \mathrm{C}$ in a refrigerator.

Characterization data

Characterization data for the substrates

2-Azido- N, N-dibenzyl-2-methylpropanamide (1a)

White solid ($1.01 \mathrm{~g}, 61 \% *$), m.p. $=54-55{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) 7.42-7.24 (m, 6H), 7.21-7.09 (m, 4H), 4.86 (s, 2H), 4.52 (s, 2H), $1.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) 171.9,136.9,136.5,128.7,128.6,127.9,127.4,126.8$, 64.1, 50.6, 48.6, 25.5; FT-IR (KBr, cm ${ }^{-1}$): 2107, 1643; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 309.1710$, found: 309.1700 .

2-Azido- N, N-bis(4-methoxybenzyl)-2-methylpropanamide (1b)

Colorless oil ($1.51 \mathrm{~g}, 82 \%$), $\mathrm{R}_{\mathrm{f}}=0.56$ (PE:EA $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.15-7.03 (m, 4H), 6.95-6.79 (m, 4H), 4.76 (s, 2H), 4.43 (s, 2H), 3.80 (s, 6H), 1.61 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.7, 159.0, 129.4, 129.0, 128.3, 128.2, 114.2, 114.0, 64.2, 55.2, 49.7, 47.6, 25.5; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2107, 1641; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+}: 369.1921$, found: 369.1914.

2-Azido- N, N-bis(2-methoxybenzyl)-2-methylpropanamide (1c)

Light yellow solid ($1.01 \mathrm{~g}, 55 \%$), m.p. $=93-95{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.25-7.19 (m, 2H), 7.12-7.10 (m, 2H), 6.98-6.96 (m, 1H), 6.91-6.88 (m, 1H), 6.85-6.79 (m, 2H), 4.93 (s, 2H), 4.58 (s, 2H), 3.75 (s, 3H), 3.69 ($\mathrm{s}, 3 \mathrm{H}), 1.56$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 172.2, 157.4, 156.8, 128.0, 127.9, 126.6, 125.4, $124.9,120.4,101.0,64.1,55.0,46.9,45.3,25.5$. FT-IR (KBr, cm^{-1}): 2108, 1642; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+}: 369.1921$, found: 369.1923.

2-Azido- N, N-bis(3-methoxybenzyl)-2-methylpropanamide (1d)

Colorless oil ($1.24 \mathrm{~g}, 67 \%$), $\mathrm{R}_{\mathrm{f}}=0.41$ (PE:EA $=10: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.28-7.21 (m, 2H), 6.85-6.82 (m, 2H), 6.76-6.72 (m, 4H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.9, 160.1, $159.9,138.5,138.2,129.8,129.6,120.2,119.1,113.2,113.0,112.4,64.1,55.1,50.6$, 48.7, 25.5; FT-IR (KBr, cm ${ }^{-1}$): 2108, 1643; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+}: 369.1921$, found: 369.1924.

2-Azido- N, N-bis(4-fluorobenzyl)-2-methylpropanamide (1e)

White solid ($1.37 \mathrm{~g}, 80 \%$), m.p. $=73-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.21-6.93(\mathrm{~m}, 8 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 171.3,162.15(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 132.5,132.0,129.7,128.6,115.6,64.1,49.9$, 47.9, 25.4; FT-IR (KBr, cm ${ }^{-1}$): 2109, 1644; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 345.1521$, found: 345.1524 .

2-Azido-N, N-bis(3-chlorobenzyl)-2-methylpropanamide (1f)

Light yellow solid ($1.79 \mathrm{~g}, 95 \%$), m.p. $=55-57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.36-7.21 (m, 4H), 7.20-6.94 (m, 4H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 172.0, 138.7, 134.6, 130.09, 127.8, 127.0, 126.0, 124.9, 64.0, 50.5, 48.6, 25.5; FT-IR (KBr, cm^{-1}): 2107, 1640; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 377.0930$, found: 377.0928.

2-Azido- N, N-bis(2-bromobenzyl)-2-methylpropanamide (1g)
White solid ($1,72 \mathrm{~g}, 76 \%$), m.p. $=107-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.92(\mathrm{~s}$, $2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 172.5, 135.8, $135.5,133.1,128.9,128.4,127.8,127.1,64.0,52.1,50.4,25.5$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2108, 1649; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 466.9900$, found: 466.9899 .

2-Azido- N -(4-fluorobenzyl)-2-methyl- N -(4-methylbenzyl)propanamide (1h)
Yellow oil ($1.35 \mathrm{~g}, 76 \%$), $\mathrm{R}_{\mathrm{f}}=0.35$ ($\mathrm{PE}: \mathrm{EA}=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.19-7.04 (m, 5H), 7.04-6.94 (m, 1H), 6.93-6.79 (m, 2H), 4.78 ($\mathrm{s}, 2 \mathrm{H}$), 4.43 (s, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.7, 162.07 (d, $J=245.9 \mathrm{~Hz}) 159.0,132.7,129.7,129.4,128.5,128.2,115.8,115.5,114.2,114.0,64.1$, 55.2, 50.0, 47.6, 25.5. FT-IR (KBr, cm^{-1}): 2108, 1642; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FN}_{4} \mathrm{O}_{2}\right]^{+}: 357.1721$, found: 357.1717 .

2-Azido-2-methyl-N,N-bis(pyridin-2-ylmethyl)propanamide (1i)
Yellow solid ($1.13 \mathrm{~g}, 73 \%$), $\mathrm{R}_{\mathrm{f}}=0.33$ (PE:EA $=1: 2$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 8.54 (d, $J=21.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=21.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.17$ (s, $2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 172.2, 156.9, 149.6, 149.2, 136.6, 122.2, 121.7, 120.9, 63.9, 53.9, 52.2, 25.4; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2109, 1643;

HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}\right]^{+}: 311.1615$, found: 311.1616.

2-Azido- N -benzyl-2-methyl- N -phenylpropanamide (1j)

Colorless oil ($1.07 \mathrm{~g}, 73 \%$), $\mathrm{R}_{\mathrm{f}}=0.38$ (PE:EA $=10: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.34-7.29 (m, 3H), 7.28-7.23 (m, 3H), 7.18-7.14 (m, 2H), 7.05-7.01 (m, 2H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.9, 142.2, 137.0, 129.0, 128.9, 128.3, 128.2, 128.0, 127.5, 64.8, 56.5, 26.6; FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2108$, 1647; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}\right]^{+}$: 295.1553, found: 295.1560.

2-Azido-2-methyl- N-phenyl- N-(phenylmethyl- d) propanamide ($\mathbf{1 j} \mathbf{j} \mathbf{d}$)
Light yellow or colorless liquid ($1.34 \mathrm{~g}, 90 \%$), $\mathrm{R}_{\mathrm{f}}=0.58$ (PE:EA $=5: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.33-7.29 (m, 3H), 7.28-7.24 (m, 3H), 7.18-7.15 (m, 2H), $7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~s}, \mathbf{1 H})[\mathrm{Ph}-\mathrm{CHD}], 1.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}): 171.9,142.2,137.0,129.0,129.0,129.0,128.4,128.3,128.0,127.5,64.8,56.1$, 26.6. The data was corresponding to the reactant $\mathbf{1 j}$.

2-Azido-2-methyl- N-(4-methylbenzyl)- N -phenylpropanamide (1k)

Light yellow solid ($1.02 \mathrm{~g}, 66 \%$), m.p. $=40-41{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: 7.35-7.27 (m, 3H), 7.09-6.98 (m, 6H), $4.81(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.7, 142.2, 137.1, 133.9, 129.0, 128.9, 128.9, 128.2, 127.9, 64.8, 56.1, 26.5, 21.1; FT-IR (KBr, cm^{-1}): 2108, 1647; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 309.1710$, found: 309.1716.

2-Azido- \boldsymbol{N}-(4-fluorobenzyl)-2-methyl- N-phenylpropanamide (11)

Yellow oil (1.18 g, 76\%), $\mathrm{R}_{\mathrm{f}}=0.56(\mathrm{PE}: \mathrm{EA}=5: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 7.36-7.28 (m, 3H), 7.17-7.08 (m, 2H), 7.03-6.97 (m, 2H), 6.97-6.89 (m, 2H), $4.81(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.9, $162.18(\mathrm{~d}, J=$ $245.9 \mathrm{~Hz}), 141.9,132.8,132.8,130.8,130.7,129.0,128.2,128.1,115.3,115.0,64.7$, 55.6, 26.5; FT-IR (KBr, cm^{-1}): 2109, 1647; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{4} \mathrm{O}\right]^{+}: 313.1460$, found: 313.1466.

2-Azido- N-benzyl- \boldsymbol{N}-2-dimethylpropanamide (1m)
Light yellow oil ($0.72 \mathrm{~g}, 62 \%$), $\mathrm{R}_{\mathrm{f}}=0.72(\mathrm{PE}: \mathrm{EA}=1: 1),{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}$, $\left.3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 171.4,136.9,128.6,127.4,64.1$, 53.1, 35.6, 25.2; FT-IR (KBr, cm ${ }^{-1}$): 2107, 1642; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 233.1397$, found: 233.1396 .

2-Azido- N-benzyl-2-methyl- N-(1-phenylethyl) propanamide (1n)
Colorless or light yellow oil (1.37 g, 84\%), $\mathrm{R}_{\mathrm{f}}=0.45(\mathrm{PE}: \mathrm{EA}=10: 1) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 2 \mathrm{H})$, $7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 172.2,140.7,138.7$, $128.7,128.3,127.4,126.7,64.5,55.9,47.9,26.0,25.7$; FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2105,1641$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 323.1866$, found: 323.1859.

2-Azido-2-methyl- N, N-diphenethylpropanamide (10)

Colorless oil ($0.15 \mathrm{~g}, 9 \%), \mathrm{R}_{\mathrm{f}}=0.31(\mathrm{PE}: \mathrm{EA}=10: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 7.36-7.13 (m, 10H), $3.61(\mathrm{~s}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 170.9,139.1,138.1,128.8,128.7,128.6,128.5,126.6,126.4,64.0$, $50.8,49.4,35.5,33.6,25.4$. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2107,1632 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 337.2023$, found: 337.2029.

2-Azido-2-methyl-1-(piperidin-1-yl) propan-1-one (1p)
Colorless liquid ($0.50 \mathrm{~g}, 51 \%$), $\mathrm{R}_{\mathrm{f}}=0.25$ (PE:EA $=5: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 3.79-3.57 (m, 4H), 1.71-1.55 (m, 6H), $1.51(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}): 169.4,64.1,46.4,26.3,25.2,24.5 ;$ FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2105$, 1641; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}\right]$: 197.1396; found: 197.1396.

2-Azido-2-methyl-1-(pyrrolidin-1-yl) propan-1-one (1q)
Colorless liquid ($0.36 \mathrm{~g}, 37 \%$), $\mathrm{R}_{\mathrm{f}}=0.19$ (PE:EA $=5: 1$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 3.73 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 169.8, 64.2, 47.8, 47.5, 27.0, 24.5, 23.1; FT-IR (KBr, cm ${ }^{-1}$): 2106,1634; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 183.1240$, found: 183.1240 .

1-Azido- N, N-dibenzylcyclobutane-1-carboxamide (1r)
Colorless oil ($1.07 \mathrm{~g}, 67 \%$), $\mathrm{R}_{\mathrm{f}}=0.40(\mathrm{PE}: \mathrm{EA}=10: 1),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 7.40-7.34 (m, 2H), 7.33-7.23 (m, 4H), 7.20-7.11 (m, 4H), 4.52 (s, 2H), 4.40 (s, 2H), 2.80 (dddd, $J=12.1,9.6,6.2,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.28 (dddd, $J=12.0,8.7,5.8,3.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.04(\mathrm{dtt}, J=11.4,9.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dtt}, J=11.7,9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 170.3, 136.8, 136.1, 128.8, 128.6, 128.1, 127.6, 127.4, 127.0, 66.2, 49.8, 47.6, 31.1, 29.5, 14.3; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2105, 1724; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 321.1710$, found: 321,1715.

1-Azido- N, N-dibenzylcyclopentane-1-carboxamide (1s)
Yellow solid ($0.86 \mathrm{~g}, 51 \%$), m.p. $=67-68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right)$: $7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, 2.41-2.29 (m, 2H), 2.06-1.92 (m, 2H), 1.86-1.72 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 171.5,136.9,136.5,128.8,128.6,128.0,127.4,126.7,74.4,50.3,48.3$, 36.2, 23.9; FT-IR (KBr, cm ${ }^{-1}$): 2102, 1643; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 335,1866$, found: 335,1873.

2-Azido- N, N-dibenzylpropanamide (1t)

Light yellow oil ($0.85 \mathrm{~g}, 58 \%$), $\mathrm{R}_{\mathrm{f}}=0.31$ (PE:EA $=10: 1$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}): 7.40-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.35(\mathrm{~m}, 4 \mathrm{H})$, $3.98(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $170.9,136.6,135.8,129.0,128.7,128.2,127.8,127.6,126.2,54.0,49.6,48.6,16.2$; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2118,1656$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}\right]^{+}$: 295.1553; found: 295.1557.

2-Azido- N, N-dibenzyl-2-phenylacetamide (1u)

Yellow oil ($0.75 \mathrm{~g}, 42 \%$), $\mathrm{R}_{\mathrm{f}}=0.49$ (PE:EA $=10: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.47-7.37 (m, 5H), 7.35-7.22 (m, 6H), 7.22-7.12 (m, 2H), 7.04-6.96 (m, 2H), $5.08(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.10(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 169.5,136.5,135.3,133.7,129.4,129.4,129.0,128.6,128.3,128.0,127.9$, 127.6, 126.2, 63.6, 49.4, 48.8; FT-IR (KBr, cm ${ }^{-1}$): 2098, 1658; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 357.1710$, found: 357.1719.

2-Azido- N, N-dibenzylacetamide (1v)

Yellow oil ($0.87 \mathrm{~g}, 62 \%$), $\mathrm{R}_{\mathrm{f}}=0.16$ (PE:EA $=10: 1$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm):) $\delta 7.39-7.18$ (m, 8H), 7.15-7.09 (m, 2H), 4.64 (s, 2H), 4.36 (s, 2H), 3.96 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 167.9, 136.4, 135.4, 129.2, 129.1, 128.7, 128.4, 128.2, 128.0, 127.7, 126.2, 50.6, 49.4, 48.9; FT-IR (KBr, cm^{-1}): 2117,1648; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 281.1397$, found: 281.1400.

2-Azido-2-methyl- N -phenyl- N -(2-phenylcyclopropyl) propanamide (1w)
Light yellow oil ($0.41 \mathrm{~g}, 25 \%$), $\mathrm{R}_{\mathrm{f}}=0.49$ (PE:EA $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.37-7.29 (m, 3H), 7.26-7.17 (m, 4H), 7.16-7.07 (m, 1H), 6.97-6.89 (m, 2H), 3.92 (dd, $J=13.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=13.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.42(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{ddt}, J=23.4,8.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.7, 142.5, 142.4, 129.0, 128.4, 128.2, 127.9, 125.6, $125.5,64.8,56.4,26.5,22.5,21.7,14.4$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2109, 1647; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 335.1866$, found: 335.1870.

(4-Azidobutyl) benzene (3) ${ }^{6}$
Light yellow or colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 7.32-7.24 (m, $2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.55(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 141.8, 128.3, 125.8, 51.3, 35.3, 28.4; FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2094$.

(3-Azidopropoxy) benzene (4) ${ }^{6}$

Light yellow or colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta \mathrm{ppm}$): 7.36-7.33 (m, $4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 137.7, 128.4, 127.7, 127.6, 73.2, 68.8, 50.8. FT-IR (KBr, cm^{-1}): 2102.
*The yield given is for the last azidation step.

Characterization data for the products

3-Benzyl-5,5-dimethyl-2-phenylimidazolidin-4-one (2a)
White solid ($55.5 \mathrm{mg}, 99 \%$), m.p. $=86-88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): δ $7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$
$14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 178.1, 137.9, 135.8, 129.4, 129.1, 128.5, 128.2, 127.6, 127.2, 73.0, 59.4, 44.3, 25.5, 24.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 281.1648$, found: 281.1647.

3-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-5,5-dimethylimidazolidin-4-one (2b)

Colorless or light yellow oil ($55.8 \mathrm{mg}, 84 \%$), $\mathrm{R}_{\mathrm{f}}=0.21$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 178.0, 160.3, 159.0, 123.0, 129.6, 128.6, 128.1, 114.4, 113.8, 72.5, 59.3, 55.2, 55.1, 43.6, 25.5, 24.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$: 341.1860, found: 341.1859 .

3-(2-Methoxybenzyl)-2-(2-methoxyphenyl)-5,5-dimethylimidazolidin-4-one (2c)
Light yellow oil ($67.4 \mathrm{mg}, 99 \%$), $\mathrm{R}_{\mathrm{f}}=0.16$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): \delta 7.32(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=$ $8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), \delta 5.42(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $2.23(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 178.0, $157.8,157.3,130.4,130.1,128.7,128.4,125.5,123.6,120.6,120.1,110.7,109.7,69.3$, $59.4,55.2,54.8,39.8,25.2,24.3$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 341.1860$, found: 341.1861.

3-(3-Methoxybenzyl)-2-(3-methoxyphenyl)-5,5-dimethylimidazolidin-4-one (2d)
Colorless oil ($59.9 \mathrm{mg}, 88 \%$), $\mathrm{R}_{\mathrm{f}}=0.36$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$
ppm): $7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.54$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 178.1,160.1,159.7,139.7,137.4,130.1,129.5,120.5,119.4,115.0$, $113.5,113.3,112.5,73.0,59.3,55.2,55.0,44.4,25.6,24.4$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}$: 341.1860; found: 341.1860.

3-(4-Fluorobenzy)-2-(4-fluorophenyl)-5,5-dimethylimidazolidin-4-one (2e) Colorless or light yellow oil ($62.6 \mathrm{mg}, 99 \%$), $\mathrm{R}_{\mathrm{f}}=0.44$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.91(\mathrm{~m}, 4 \mathrm{H}), 5.04$ $(\mathrm{s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, 1.27 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $178.0,163.2(\mathrm{~d}, J=248.0 \mathrm{~Hz}$), $162.2(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=8.1$ $\mathrm{Hz}), 129.2(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 72.5,59.3$, 43.7, 25.7, 24.3; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 317,1460$, found: 317.1459 .

3-(3-Chlorobenzyl)-2-(3-chlorophenyl)-5,5-dimethylimidazolidin-4-one (2f)
Colorless oil ($64.3 \mathrm{mg}, 92 \%$), $\mathrm{R}_{\mathrm{f}}=0.26$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.40-7.29 (m, 2H), 7.26-7.17 (m, 3H), $7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 177.9, $140.2,137.8,135.1,134.4,130.3,129.9,129.8,128.3,128.0,127.4,126.3,125.6,72.7$, 59.2, 43.9, 25.9, 24.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 349.0869, found: 349.0872.

3-(2-Bromobenzyl)-2-(2-bromophenyl)-5,5-dimethylimidazolidin-4-one (2g)

Colorless oil ($85.9 \mathrm{mg}, 98 \%$), $\mathrm{R}_{\mathrm{f}}=0.49$ (PE:EA $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.58-7.44 (m, 2H), 7.40-7.30 (m, 1H), 7.26-7.06 (m, 4H), 7.01-6.92 (m, 1H), $5.56(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, 3 H), 1.38 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 177.8, 134.4, 133.6, 132.9, 130.6, 130.4, 129.3, 128.1, 127.5, 123.9, 72.2, 59.3, 44.7, 25.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 438.9838$, found: 438.9839 .

3-(4-Fluorobenzyl)-2-(4-methoxyphenyl) -5,5-dimethylimidazolidin-4-one ($\mathbf{2 h} \mathbf{- 1}$) 2-(4-fluorophenyl)-3-(4-methoxybenzyl)-5,5-dimethylimidazolidin-4-one (2h-2) Colorless or light yellow oil ($64,4 \mathrm{mg}, 98 \%$), $\mathrm{R}_{\mathrm{f}}=0.22$ (PE:EA $=1: 1$), ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.88(\mathrm{~m}, 8 \mathrm{H})$, $6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83$ (s, 3H), 3.78 (s, 3H), 3.55 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.92(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 178.1,178.0,163.2(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 162.2(\mathrm{~d}, J=245.0 \mathrm{~Hz}), 160.4$, $159.0,134.0,134.0,131.9,131.9,130.0,130.0$, 129.7, 129.5, 129.2, 129.2, 128.6, $127.8,116.1,115.9,115.5,115.3,114.4,113.9,72.7,72.3,59.4,59.3,55.3,55.2,43.8$, 43.6, 25.6, 25.5, 24.3, 24.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}\right]^{+}$: 329.1660 , found: 329.1660 .

5, 5-Dimethyl-2-(pyridin-2-yl)-3-(pyridin-2-ylmethyl) imidazolidin-4-one (2i)
Yellow oil (40.1 mg, 71\%), $\mathrm{R}_{\mathrm{f}}=0.31$ ($\mathrm{DCM}: \mathrm{MeOH}=20: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 8.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, 4.80 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ ($\mathrm{s}, 1 \mathrm{H}), 1.53$ (d, $J=1.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 178.4, $156.0,155.0$, $149.9,148.9,136.7,136.5,124.1,124.1,122.1,122.0,73.8,59.3,46.0,24.8,24.3$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}\right]^{+}: 283.1553$, found: 283.1554.

5, 5-Dimethyl-2,3-diphenylimidazolidin-4-one (2j)
Light yellow oil ($27.7 \mathrm{mg}, 52 \%$), $\mathrm{R}_{\mathrm{f}}=0.32$ ($\mathrm{PE}: \mathrm{EA}=1: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 7.38-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{~s}$, $1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$):177.8, 138.4, 137.2, 129.1, 129.0, 128.6, 126.8, 125.0, 121.8, 74.8, 60.2, 25.5, 24.2; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 267.1492$, found: 267.1497.

1

2
$0.20: 0.82$

5, 5-Dimethyl-2,3-diphenylimidazolidin-4-one-1-d (2j-d-1)

5, 5-Dimethyl-2,3-diphenylimidazolidin-4-one-2-d (2j-d-2)

Light yellow oil ($22.5 \mathrm{mg}, 42 \%$), $\mathrm{R}_{\mathrm{f}}=0.36$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}$, 0.20 H) [C-H], $1.98(\mathrm{~s}, 0.82 \mathrm{H})$ [B N-H], $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 177.9,138.5,137.3,129.1,129.1,128.7,126.8,125.0,121.9$, 75.0, 60.2, 25.6, 24.3.

5, 5-Dimethyl-3-phenyl-2-(p-tolyl) imidazolidin-4-one (2k)

Light yellow oil ($28.0 \mathrm{mg}, 50 \%$), $\mathrm{R}_{\mathrm{f}}=0.35$ (PE:EA = 1:1); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 7.33$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.11$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04$ (t, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 177.8, 138.9, 137.3, 135.5, 129.7, 128.6, 126.6, 124.9, 121.9, 74.7, 60.1, 25.6, 24.2, 21.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 281.1648$, found: 281.1652.

2-(4-Fluorophenyl)-5,5-dimethyl-3-phenylimidazolidin-4-one (21)
Colorless oil (27.3 mg, 48\%), $\mathrm{R}_{\mathrm{f}}=0.34$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl, δ ppm): 7.35-7.28 (m, 4H), 7.27-7.22(m, 2H), 7.10-7.04 (m, 1H), $7.00(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 177.6,162.9(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 137.1,134.4,134.4,128.7,128.7$, $128.6,125.2,122.0,116.2,116.0,74.2,60.2,25.6,24.2$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}\right]^{+}$: 285.1398, found: 285.1403.

3, 5, 5-Trimethyl-2-phenylimidazolidin-4-one (2m-1)

Light yellow oil ($8.2 \mathrm{mg}, 20 \%$), $\mathrm{R}_{\mathrm{f}}=0.18(\mathrm{PE}: \mathrm{EA}=1: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm): 7.46-7.39 (m, 3H), 7.36-7.32 (m, 2H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$):178.4, 138.5, 129.5, $129.2,126.9,77.2,77.0,76.8,75.9,59.5,27.6,26.0,24.6 ;$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 205.1335$, found: 205.1335 .

3-Benzyl-5,5-dimethylimidazolidin-4-one (2m-2)

Light yellow oil (16.3 mg, 40\%), $\mathrm{R}_{\mathrm{f}}=0.08(\mathrm{PE}: \mathrm{EA}=1: 1) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta \mathrm{ppm}): 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $2 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) 177.6, 136.0, 128.6, 127.8, 127.6, 60.4, 59.3, 45.4, 23.8; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 205.1335$, found: 205.1335 .

3-Benzyl-2,5,5-trimethyl-2-phenylimidazolidin-4-one (2n)
Colorless or light yellow oil ($52.4 \mathrm{mg}, 89 \%$), $\mathrm{R}_{\mathrm{f}}=0.41(\mathrm{PE}: \mathrm{EA}=1: 1),{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.96$
(d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$, 1.32 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 177.8, 143.7, 138.1, 128.8, 128.4, 128.2, 127.8, 127.2, 125.8, 78.5, 58.8, 44.8, 28.5, 28.1, 26.5; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 295.1805$, found: 295.1805.

2-Benzyl-5,5-dimethyl-3-phenethylimidazolidin-4-one (2o)

Yellow oil ($41.3 \mathrm{mg}, 67 \%$), $\mathrm{R}_{\mathrm{f}}=0.33$ (PE:EA = 1:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.34-7.15 (m, 8H), 7.14-7.08 (m, 2H), 4.47 (dd, $J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=13.9,8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=14.0,7.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.68(\mathrm{~m}, 4 \mathrm{H})$., $1.72(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$):177.9, 138.3, 135.1, 129.4, 128.7, 128.6, 128.5, 127.0, 126.5, 71.0, 58.6, 41.7, 39.9, 33.5, 25.6, 24.7; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 309.1961, found: 309.1962.

tert-Butyl 2,2-dimethyl-3-oxohexahydroimidazo[1,2-a]pyridine-1(5H)carboxylate (2p')
Colorless or light yellow oil ($45.1 \mathrm{mg}, 84 \%$), $\mathrm{R}_{\mathrm{f}}=0.33$ (PE:EA $=3: 1$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 4.85-4.69,(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.69(\mathrm{~m}, 1 \mathrm{H})$, $2.68-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 16 \mathrm{H})$, 1.43-1.29 (m, 1H), 1.18-0.93 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 171.4, 153.0, 80.6, 70.3, 60.6, 39.8, 32.9, 28.4, 25.0, 24.4, 24.1, 22.2; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 269.1860$, found: 269.1867.

tert-Butyl-2,2-dimethyl-3-oxohexahydro-1H-pyrrolo[1,2-a]imidazole-1-carboxyla te ($2 q^{\prime}$)
Colorless or light yellow oil ($16.8 \mathrm{mg}, 33 \%$), $\mathrm{R}_{\mathrm{f}}=0.28$ (PE:EA $=3: 1$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 5.11-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 1 \mathrm{H})$, $2.51-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 15 \mathrm{H})$, $1.42-1.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 176.1,153.5,74.4,41.4,33.3$, 32.6, 28.4, 25.0, 24.0, 23.8, 22.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for
$\left[\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: \mathbf{2 5 5 . 1 7 0 3}$, found: 255.1710 .

7-Benzyl-6-phenyl-5,7-diazaspiro[3.4]octan-8-one (2r)
Yellow oil (46.2 \%, 79\%), $\mathrm{R}_{\mathrm{f}}=0.56(\mathrm{PE}: \mathrm{EA}=1: 1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta$ ppm): 7.40-7.34 (m, 3H), 7.29-7.22 (m, 3H), 7.21-7.15 (m, 2H), 7.09-7.02 (m, 2H), $5.10(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H})$, $2.62-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 176.5,139.0,136.0,129.2,129.0,128.5,128.2,127.5,127.0$, 73.8, 62.6, 43.9, 34.6, 34.1, 13.8; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 293.1648$, found: 293.1650.

3-Benzyl-2-phenyl-1,3-diazaspiro[4.4]nonan-4-one (2s)
Colorless oil ($57.6 \mathrm{mg}, 94 \%$), $\mathrm{R}_{\mathrm{f}}=0.67$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.41-7.35 (m, 3H), 7.28-7.20 (m, 5H), 7.05-6.98 (m, 2H), 5.01 (d, J = 14.3 Hz , $2 \mathrm{H}), 3.56(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.67(\mathrm{~m}, 7 \mathrm{H}), 1.63-1.50(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 178.48, 138.13, 136.01, 129.4, 129.0, 128.5, 128.2, 127.5, 127.3, 73.8, 69.5, 44.5, 37.8, 37.2, 25.2, 25.1; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 307.1805, found: 307.1807.

(2R*,5R*)-3-Benzyl-5-methyl-2-phenylimidazolidin-4-one and
(2R*,5S*)-3-benzyl-5-methyl-2-phenylimidazolidin-4-one (2t)
Colorless oil ($38.4 \mathrm{mg}, 72 \%$), $\mathrm{R}_{\mathrm{f}}=0.67$ (PE:EA = 1:1); dr = 1:1; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):(\mathbf{A}): 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07$ $-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}$, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;(\mathbf{B}): 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33$ $-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 175.6,175.2,138.4,138.0,135.8,135.7,129.6,129.4,129.1$, $129.0,128.6,128.5,128.4,128.2,127.7,127.6,127.5,126.9,74.8,74.3,55.3,54.2$,
44.4, 44.1, 18.0, 17.9; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$:
267.1492, found: 267.1495.

(2R*, 5R*)-3-benzyl-2,5-diphenylimidazolidin-4-one and (2S*, 5R*)-3-Benzyl-2, 5-diphenylimidazolidin-4-one (2u)
Yellow oil ($51.9 \mathrm{mg}, 79 \%$), $\mathrm{R}_{\mathrm{f}}=0.67$ (PE:EA $=1: 1$); dr $=1: 0.7 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):(\mathbf{A}) 7.56$--7.52 (m, 2H), 7.43---7.20(m, 11H), 7.11---7.04 (m, 2H), $5.28(\mathrm{~d}, J=1.9,1 \mathrm{H}), 4.98(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H})$; (B) 7.49 -- $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43$-- $7.20(\mathrm{~m}, 11 \mathrm{H}), 7.04=$ $-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.55$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 172.9, 172.8, 139.2, 139.0, 138.4, 138.1, 135.9, 135.7, 129.5, 129.4, 129.1, 128.9, 128.6, 128.6, $128.6,128.5,128.2,128.0,127.8,127.6,127.0,126.9,75.3,74.4,63.1,62.2,44.5,44.2$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 329.1648$, found: 329.1650.

5, 5-Dimethyl-3-phenyl-2-(2-phenylcyclopropyl) imidazolidin-4-one (2w)
Colorless oil ($27.0 \mathrm{mg}, 44 \%$), $\mathrm{R}_{\mathrm{f}}=0.21$ (PE:EA $=1: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 7.46-7.38 (m, 2H), 7.35-7.27 (m, 3H), 7.25-7.19 (m, 2H), 7.18-7.12 (m, 1H), 7.03-6.98 (m, 2H), $4.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}(\mathrm{NH}$ and CH)), $1.45(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm): 177.3, 140.5, 136.9, 129.2, 128.0, 126.8, 126. $0,125.9,125.8,76.9,59.4,27.3$, 26.1, 24.7, 22.5, 10.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 307.1806, found: 307.1805.

tert-Butyl 2-phenylpyrrolidine-1-carboxylate (5) ${ }^{\mathbf{6}}$
Yellow liquid ($\mathbf{A} \& \mathbf{B}, 44.0 \mathrm{mg}, 89 \%$); $\mathrm{R}_{\mathrm{f}}=0.21$ (PE:EA = 20:1); $\mathbf{A}: \mathbf{B}=2: 1 ;(\mathbf{A}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta \mathrm{ppm}$): 7.35-7.27 (m, 2H), 7.26-7.14 (m, 3H), $4.78(\mathrm{~s}, 1 \mathrm{H})$, $3.72-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 154.5,145.1,128.3,128.0,126.4,125.4,79.1,61.2,47.0,36.0$,
28.4, 28.1, 23.1. (B): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta \mathrm{ppm}$): 7.35-7.27 (m, 2H), $7.26-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.78(\mathrm{~m}$, $3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 154.5,145.1,128.2,126.4$, 125.2, 79.1, 60.6, 47.2, 34.8, 28.3, 23.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}\right]^{+}: 248.1645$, found: 248.1648 .

tert-Butyl 2-phenyloxazolidine-3-carboxylate (6) ${ }^{7}$
Yellow liquid ($38.9 \mathrm{mg}, 78 \%$); $\mathrm{R}_{\mathrm{f}}=0.33$ (PE: $\mathrm{EA}=10: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta \mathrm{ppm}): 7.48-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 153.1,139.6,128.3$, 128.2, 126.5, 89.1, 80.4, 65.7, 44.9, 28.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}\right]^{+}: 250.1440$, found: 250.1438 .

Crystallographic data for compound 2a

The single crystal of $\mathbf{2 a}$ was collected through mixed solvent recrystallization with dichloromethane and petroleum Ether, and the collected crystal 2a was colorless and transparent. A suitable crystal was selected and the measurement was carried on a SuperNova, Eos diffractometer. The data for compound 2a were collected on Brookhaven BI-200SM. The crystal was kept at 295.62(10) K during data collection. Using Olex $2,{ }^{8}$ the structure was solved with the ShelXS ${ }^{9}$ structure solution program using Direct Methods and refined with the ShelXL ${ }^{10}$ refinement package using Least Squares minimization.

Molecular Structure of 2a

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(M=280.36 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 21 / \mathrm{n}$ (no. 14), $a=17.1267(9) \AA, b=5.5794(3) \AA, c=17.3458(8) \AA, \beta=110.422(6)^{\circ}, V=$ $1553.33(13) \AA^{3}, Z=4, T=295.62(10) \mathrm{K}, \mu\left(C u K_{\alpha}\right)=0.587 \mathrm{~mm}^{-1}$, Dcalc $=1.199 \mathrm{~g} / \mathrm{cm}^{3}$, 5180 reflections measured $\left(11.02^{\circ} \leq 2 \Theta \leq 133.02^{\circ}\right), 2668$ unique $\left(R_{\text {int }}=0.0183, R_{\text {sigma }}=\right.$ 0.0235) which were used in all calculations. The final R_{l} was $0.0495(>2 \operatorname{sigma}(\mathrm{I}))$ and $\mathrm{w} R_{2}$ was 0.1419 (all data). CCDC-1872309 contains the supplementary crystallographic data for this paper. These data can be obtained free from www.ccdc.cam.ac.uk. (CCDC No. 1872309).

Table S1. Crystal data and structure refinement of 2a

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	280.36
Temperature/K	295.62(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	17.1267(9)
b/Å	5.5794(3)
c/Å	17.3458(8)
$\alpha{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	110.422(6)
γ°	90.00
Volume/A ${ }^{3}$	1553.33(13)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.199
μ / mm^{-1}	0.587
F(000)	600.0
Crystal size/mm ${ }^{3}$	$0.17 \times 0.14 \times 0.12$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ $/{ }^{\circ} 11.02$ to 133.02	
Index ranges	$-15 \leq h \leq 20,-5 \leq k \leq 6,-20 \leq 1 \leq 14$
Reflections collected	5180
Independent reflections	$2668\left[\mathrm{R}_{\text {int }}=0.0183, \mathrm{R}_{\text {sigma }}=0.0235\right]$
Data/restraints/parameters	2668/0/196
Goodness-of-fit on F^{2}	1.053
Final R indexes $[1>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0495, \mathrm{wR}_{2}=0.1321$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0583, \mathrm{wR}_{2}=0.1419$
Largest diff. peak/hole / e $\AA^{-3} 0.17 /-0.15$	

Table S2. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2 a . U_{eq} is defined as $1 / 3$ of the trace of the orthogonalised U_{I} tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
N 1	$8030.1(8)$	$2111(2)$	$5399.8(8)$	$47.2(3)$
O1	$7389.9(8)$	$4831(2)$	$4390.0(8)$	$67.8(4)$
C2	$9228.6(9)$	$-108(3)$	$6360.9(10)$	$45.1(4)$
C12	$7547.3(10)$	$2585(3)$	$5927.1(11)$	$52.5(4)$
C7	$9819.7(11)$	$1679(3)$	$6644.4(12)$	$58.0(5)$
C8	$8389.2(10)$	$1903(3)$	$4229.8(10)$	$49.7(4)$
N2	$8949.2(11)$	$360(3)$	$4872.4(10)$	$64.2(5)$
C13	$6923.0(9)$	$640(3)$	$5892.4(10)$	$48.4(4)$
C11	$7871.4(10)$	$3163(3)$	$4663.0(10)$	$47.9(4)$
C1	$8579.7(10)$	$23(3)$	$5511.2(10)$	$47.7(4)$
C6	$10431.3(11)$	$1516(4)$	$7407.3(13)$	$69.1(6)$
C3	$9259.7(12)$	$-2027(3)$	$6870.7(11)$	$57.5(5)$
C17	$6272.0(13)$	$-2050(4)$	$6565.1(13)$	$74.9(6)$
C4	$9873.1(14)$	$-2178(4)$	$7636.8(12)$	$69.9(5)$
C18	$6852.5(12)$	$-294(4)$	$6597.5(11)$	$66.4(5)$
C5	$10467.2(12)$	$-432(4)$	$7905.4(12)$	$68.9(6)$
C9	$8877.4(14)$	$3687(4)$	$3920.3(15)$	$77.2(6)$
C10	$7810.5(13)$	$430(4)$	$3520.8(12)$	$70.1(5)$
C16	$5766.7(16)$	$-2884(5)$	$5833.3(15)$	$89.6(8)$
C14	$6403.6(15)$	$-211(5)$	$5156.9(12)$	$96.2(9)$
C15	$5828(2)$	$-1947(7)$	$5126.2(16)$	$131.2(14)$

Figure S1 Molecular structure of 2a. Hydrogen and solvent molecules are omitted for clarity. Thermal ellipsoids are drawn with $\mathbf{5 0 \%}$ probability.

References

1. Alex, S. I.; William, J. M.; Douglas, J. A.; Barbara, B. F.; Brian, M. F.; Matthew, F. S. Organometallics. 2008, 27, 1902-1911.
2. Mohammed, N. A.; Francis, S. M. Dalton Trans. 2014, 43, 15727-15736.
3. Li, D.; Yang, T.; Su, H.; Yu, W. Adv. Synth. Catal. 2015, 357, 2529-2539.
4. Stephen, C.; Alexandra, K. K.; Duncan, B. J.; Meredith, W. Tetrahedron Lett. 2000, 41, 3513-3516.
5. Tanguy, S.; Nicolai, C. Angew. Chem. Int. Ed. 2012, 51, 12842-12845.
6. Shing, K-P.; Liu, Y.; Cao, B.; Chang, X-Y.; You, T.; Che, C-M. Angew. Chem. Int. Ed. 2018, 57, 11947-11951.
7. Nathan, C.; Lin, Z.; Zhang, T.; Gilhula, J. C.; Abney, C. W.; Lin, W. J. Am. Chem. Soc. 2016, 138, 3501-3509.
8. Dolomanov, O. V. ; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
9. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
10. Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

1b

1d
(

$\stackrel{M}{\sim}$

1 e

1f

1 g

1h

$1 i$

1j

N8\%
N尺웅

in

1j－d

2	8	めさタかさめで
E	さ	¢ู\％

气े

1k

둥

11

$1 m$

.

1n

$1 q$

1r

1s

लू
īm
īn
īn

1t

$\beta 1$

N8:
Nio
Nion
๗ू\%
$\underset{\sim}{2}$
$\stackrel{1}{\circ}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

1u

1v

-
| 11

$1 \dagger$
8
i
i

$\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

1w

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & & 90 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0
									f1 (ppm)									0

4

2a

～～ロの

2b

8
i
i 1

\qquad

2d

2e

\％	\＄ 8 \％2		ำ\％\％ํํ	\bar{m}	\％	®\％
$\stackrel{0}{1}$	¢ ioi	Mల్లMmjicica	ドイブN	8	\％	¢
I	\1\％	＂以		1	I	11

$2 f$

2 g

$$
\begin{array}{ll}
\text { M8\% } \\
\text { KKion } & \text { む } \\
\text { Kinl }
\end{array}
$$

2h-1\&2h-2

$2 i$
(

2j

2j-d

2k

21

2m-1

2m-2

$\begin{array}{r}8 \\ \stackrel{8}{8} \\ \hline\end{array}$

n
i

2n

20

-177.92

$\begin{array}{llllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120\end{array}$
${ }^{100} \mathrm{f1}_{(\mathrm{ppm})}{ }^{90}$
$2 p^{\prime}$

2q'

$2 r$

$\underset{8}{ }$	¢โన29\％	ษ8↔®	－	\％	3\％
\bigcirc	¢ Mincinisin	「「ブツ	\％	\％	馬产

2s

illon

$2 t$

2u

NOE Data of 2 u :

$\stackrel{8}{\infty}$

2w

됵
N人NO
oे
ion
i
～～～윤
ベฌัส
$\stackrel{\square}{\circ}$

$80 \quad 70$
50
30

5

$\stackrel{\square}{\underset{j}{j}}$

