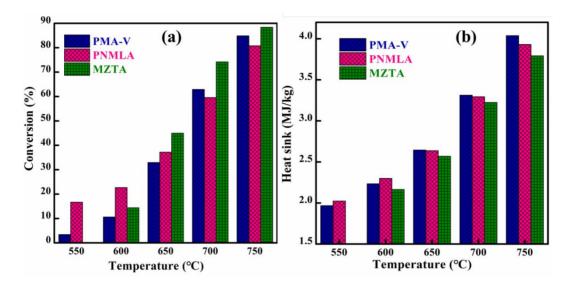
Synthesis of High Stability Nanosized Pt Loaded MgAl₂O₄ Catalyst for *n*-decane Cracking with Enhanced Activity and Durability


Yi Jiao^{a, *}, Ting Chen^b, Linlin Wang^b, Peng Yao^a, Jun Zhang^b, Yusheng Chen^c, Yaoqiang Chen^c and Jianli Wang^c

^aInstitute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan, China ^bSchool of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan, China ^cCollege of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China

*E-mail: jiaoyiscu@163.com. Tel.: +86-028-85418451. Fax: +86-028-85418451 (Y.J.)

Supporting Material

Figure S1 *n*-decane conversion (a) and heat sink (b) over the PMA-V catalyst in this work, PNMLA catalyst in ref.27, MZTA catalyst in ref.24.

 $PNMLA = Pt-Ni/MoO_3/La-Al_2O_3$; $MZTA = MoO_3/ZrO_2-TiO_2-Al_2O_3$

Figure S2 Thermal stability over the PMA-V catalyst in this work and PNMLA catalyst

in ref.27

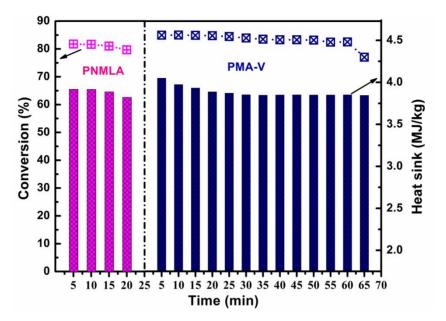
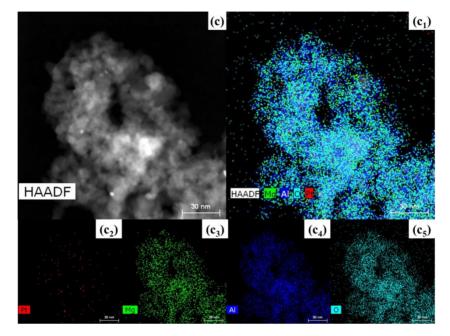



Figure S3 HAADF-TEM EDS elemental mapping of PMA-V catalyst, (c) another

section different from (b) in the manuscript of PMA-V micrographs

As shown in Figure S3, Pt species are uniformly dispersed on the MA surface, very few Pt species are sintered calcination at 800 °C.

Table S1 The amount of carbon deposition over the PMA-V catalyst in this work,

Catalysts	Carbon deposition		
	mg	mg/cm ²	mg/(cm ² •min)
PMA-V	169.2 (93min)	53.87	0.58
PNMLA	95.4 (28min)	19.08	0.68
MZTA	85.4 (28min)	17.07	0.61

PNMLA catalyst in ref.27, MZTA catalyst in ref.24.

Obviously, the rate of coke formation over PMA-V catalysts is lower than that in PNMLA and MZTA catalysts ^{24,27}.

References

- (24) Jiao, Y.; Zhang, H.; Li, S. S.; Guo, C. H.; Yao, P.; Wang, J. L. Impact of Acidity in ZrO₂-TiO₂-Al₂O₃ Composite Oxides on the Catalytic Activity and Coking Behaviors during n-Decane Cracking. *Fuel* **2018**, *233*, 724.
- (27) Zhang, J.; Chen, T.; Yao, P.; Jiao, Y.; Wang, J. L.; Chen, Y. Q.; Zhu, Q.; Li, X. Y. Catalytic Cracking of *n*-Decane over Monometallic and Bimetallic Pt-Ni/MoO₃/La-Al₂O₃ Catalysts: Correlations of Surface Properties and Catalytic behaviors. *Ind. Eng. Chem. Res.* **2019**, *58*, 1823.