Supporting Information

Carbon Dioxide Reduction by Multimetallic Uranium(IV) Complexes Supported by Redox-Active Schiff Base Ligands

Nadir Jori, ${ }^{\mathrm{a}}$ Marta Falcone, ${ }^{\text {a }}$ Rosario Scopelliti ${ }^{\mathrm{a}}$ and Marinella Mazzanti* ${ }^{\text {a }}$
[a] Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
*Corresponding authors: E-mail: marinella.mazzanti@epfl.ch, ISIC/EPFL.

Table of Contents

1. NMR spectra S3
2. Mass spectra S14
3. Electrochemistry. S15
4. UV-vis spectroscopy S20
5. X-ray crystallographic data S21

1. NMR spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, pyr- $\mathrm{d}_{5}, 298 \mathrm{~K}$) of $\mathrm{K}_{3}{ }^{\mathrm{t}}$ BuTrensal

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}\right.$, pyr- $\left.\mathrm{d}_{5}, 298 \mathrm{~K}\right)$ of $\mathrm{K}_{3}{ }^{\text {t }}$ BuTrensal

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, pyr- $\mathrm{d}_{5}, 298 \mathrm{~K}$) of $\mathbf{1}$

Figure S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}\right)$ of isolated compound of synthesis of [U_{2} - ${ }^{\text {t }}$ Bu-bis-trensal],

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum (400MHz, THF-d $\left.\mathrm{d}_{8}, 298 \mathrm{~K}\right)$ of [U(trensal)][OTf], complex 2

Figure S6: ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$) spectrum of reaction mixture of $\mathbf{1}$ with 100 eq ${ }^{13} \mathrm{CO}_{2}$ after 6 days

$\begin{array}{llllllllllllllllllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \begin{array}{c}10 \\ f 1(\mathrm{ppm})\end{array} & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -8\end{array}$

Figure S7: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$) spectrum of reaction mixture of $\mathbf{1}$ with 100 eq ${ }^{13} \mathrm{CO}_{2}$ after 6 days.

Figure S8: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right)$ powder from reaction $\mathbf{1}+100$ eq ${ }^{13} \mathrm{CO}_{2}$ after filtering and dissolving the powder in $\mathrm{DMSO}-\mathrm{d}_{6}$.

```
- DMSO-d
```

- THF
- Unknown

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$) evolution of $\mathbf{1}$ with 2 eq ${ }^{13} \mathrm{CO}_{2}$

Figure S10: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$) of the supernatant of reaction mixture of $\mathbf{1}$ with 2 eq of ${ }^{13} \mathrm{CO}_{2}$ after 20 days, after removing the solvent and dissolving in basic $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=12) . \mathrm{CD}_{3} \mathrm{CN}$ was used as internal reference for the

Figure S11: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ of the solid of reaction mixture of $\mathbf{1}$ with 2 eq of ${ }^{13} \mathrm{CO}_{2}$ after 20 days, dissolving in basic $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=12) . \mathrm{CD}_{3} \mathrm{CN}$ was used as internal reference for the chemical shifts.

- $\mathrm{CD}_{3} \mathrm{CN}$
- Unknown

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}, 298 \mathrm{~K}\right)$ evolution of $\mathbf{1}+10 \mathrm{eq}{ }^{13} \mathrm{CO}_{2}$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}\right.$, pyr- $\left.\mathrm{d}_{5}, 298 \mathrm{~K}\right)$ of supernatant from reaction $\mathbf{1}+10$ eq ${ }^{13} \mathrm{CO}_{2}$ after centrifuging and removing the solvent in vacuo.

Figure S14: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100 \mathrm{MHz}\right.$, pyr- $\left.\mathrm{d}_{5}, 298 \mathrm{~K}\right)$ of supernatant from reaction $\mathbf{1}+10$ eq ${ }^{13} \mathrm{CO}_{2}$ after centrifuging and removing the solvent in vacuo.

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}\right)$ evolution of reaction mixture $3+4$ eq AgOTf.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz, THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$) of reaction mixture $\mathbf{3}+2$ eq AgOTf after filtering.

- THF-d ${ }_{8}$
- 1

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , THF-d $\mathrm{d}_{8}, 298 \mathrm{~K}$) comparison of reaction mixture $\mathbf{3}+4 \mathrm{eq}^{13} \mathrm{CS}_{2}$. (After two days and before) .

Figure S18: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}\right)$ of reaction mixture $3+4$ eq ${ }^{13} \mathrm{CS}_{2}$ after two days.

- THF- d_{8}
- ${ }^{13} \mathrm{CS}_{2}$
- New species

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DMSO}_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}$). of the reaction mixture after 2 days addition of 4 eq ${ }^{13} \mathrm{CS}_{2}$ to a THF solution of 3 at room temperature, removal of the solvent and dissolution in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Figure S20: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\mathrm{DMSO}_{\mathrm{d}} \mathrm{d}_{6}, 100 \mathrm{MHz}, 298 \mathrm{~K}$) of the reaction mixture after 2 days addition of 4 eq ${ }^{13} \mathrm{CS}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature, removal of the solvent and dissolution in DMSO- d_{6}.

Figure S21: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after 6 days addition of 1 equivalent ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature.

- THF-d 8
- Free ${ }^{13} \mathrm{CO}_{2}$

Figure S22: Quantitative ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after addition of 1 equivalent ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature, removal of the solvent and dissolution in basic $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=12)$ using ${ }^{13} \mathrm{C}$-labelled sodium acetate as internal standard.

$$
\text { - }{ }^{13} \mathrm{CO}_{3}{ }^{-2} \mathrm{COOCH}_{3}
$$

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{THF}-\mathrm{d}_{8}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the reaction mixture, after addition of 2 eq ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature

- THF-d 8
- 1

Figure S24: Quantitative ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after addition of 2 equivalent ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of 3 at room temperature, removal of the solvent and dissolution in basic $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=12)$ using ${ }^{13} \mathrm{C}$-labelled sodium acetate as internal standard..

Figure S25: ${ }^{1} \mathrm{H}$ NMR (THF- $\left.\mathrm{d}_{8}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectra comparison of the evolution of the reaction mixture of the addition 4 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature.

- THF-d d_{8}
- 1

Figure S26: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{THF}-\mathrm{d}_{8}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after 6 days addition of 4 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature.

Figure S27: Quantitative ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after 6 days addition of 4 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of 3 at room temperature, removal of the solvent and dissolution in basic $\mathrm{D}_{2} \mathrm{O}(\mathrm{pD}=12)$ using ${ }^{13} \mathrm{C}$-labelled sodium acetate as internal standard.

Figure S28: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the powder of the reaction mixture after addition of 100 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature.

Figure S29: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\left.\mathrm{d}_{8}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after 6 days addition of 100 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature.

Figure S30: Quantitative ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right)$ spectrum of the reaction mixture after 6 days addition of 100 equivalents ${ }^{13} \mathrm{CO}_{2}$ to a THF solution of $\mathbf{3}$ at room temperature, removal of the solvent and dissolution in basic $\mathrm{D}_{2} \mathrm{O}$ $(\mathrm{pD}=12)$ using ${ }^{13} \mathrm{C}$-labelled sodium acetate as internal standard.

2. Mass spectra

Figure S31: MS spectra of complex 1: experimental (up) and theoretical (down) profiles of the peak at $\mathrm{m} / \mathrm{z} 1387$

Figure S32: MS spectra of reaction mixture of 1 with CO_{2} after 6 days: experimental (up) and theoretical (down) profiles of the peak at m/z 1431

3. Electrochemistry

Figure S33 Room temperature cyclic voltammogram of complex [U_{2} (bis-trensal)] $\mathbf{1}$ recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Figure S34 Room temperature cyclic voltammogram of complex $\left[\mathrm{U}_{2}\right.$ (bis-trensal) $] \mathbf{1}$ recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, at different scan rates $50 \mathrm{mV} / \mathrm{sec}$ (blue), $100 \mathrm{mV} / \mathrm{sec}$ (orange), $500 \mathrm{mV} / \mathrm{sec}$ (grey) and $1000 \mathrm{mV} / \mathrm{sec}$ (yellow).

Figure S35 Room temperature cyclic voltammogram of complex [U(trensal)][OTf] 2 recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Figure S36 Room temperature cyclic voltammogram of complex [U(trensal)][OTf] 2 recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, at different scan rates $50 \mathrm{mV} / \mathrm{sec}$ (blue), $100 \mathrm{mV} / \mathrm{sec}$ (orange), $500 \mathrm{mV} / \mathrm{sec}$ (grey) and $1000 \mathrm{mV} / \mathrm{sec}$ (yellow).

Figure S37 Room temperature cyclic voltammogram of complex $\left[\left\{\mathrm{K}(\mathrm{THF})_{3}\right\}_{2} \mathrm{U}_{2}\right.$ (cyclo-trensal)] 3-THF recorded in 0.1 M
$\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution in presence of excess cryptand, at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Figure S38 Room temperature cyclic voltammogram of complex $\left[\left\{\mathrm{K}(\mathrm{THF})_{3}\right\}_{2} \mathrm{U}_{2}\right.$ (cyclo-trensal) $]$ 3-THF recorded in 0.1 M $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution in presence of excess cryptand, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, at different scan rates $50 \mathrm{mV} / \mathrm{sec}$ (blue), $100 \mathrm{mV} / \mathrm{sec}$ (orange), $500 \mathrm{mV} / \mathrm{sec}$ (grey) and $1000 \mathrm{mV} / \mathrm{sec}$ (yellow).

Figure S39 Room temperature cyclic voltammogram of complex [U_{2} (bis-trensal)] 1 recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM pyridine solution at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Figure S40 Room temperature cyclic voltammogram of complex [U_{2} (bis-trensal)] $\mathbf{1}$ recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM THF solution at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Figure S41 Room temperature cyclic voltammogram of complex [U(trensal)][OTf] 2 recorded in $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ in 4 mM solution THF solution at $100 \mathrm{mV} / \mathrm{sec}$ scan rate, referenced against $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} /\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

4. UV-vis spectroscopy

Figure S42 UV-vis spectrum at room temperature of a 5 mM solution of [U(trensal)][OTf], $\mathbf{2}$ in THF.

Figure S43 UV-vis spectrum at room temperature of a 5 mM solution of [U(bis-trensal)], $\mathbf{1}$ in THF.

Figure S44 UV-vis spectrum at room temperature of a 5 mM solution of $\left[\left\{\mathrm{K}(\mathrm{THF})_{3}\right\}_{2} \mathrm{U}_{2}\right.$ (cyclo-trensal)], 3-THF in THF.

5. X-ray crystallographic data

Figure $\mathbf{S 4 5}$ Molecular structure of complex 4. Hydrogen atoms and THF molecules were omitted for clarity. Color code: uranium (green), nitrogen (blue), oxygen (red), carbon (grey), C-C bond between imine (yellow).

Table S1. X-ray crystallographic data.

Compound	1a	2	3-Py.(pyridine)	4
Formula	$\mathrm{C}_{102} \mathrm{H}_{150} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{U}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SU}$	$\mathrm{C}_{88} \mathrm{H}_{88} \mathrm{~K}_{2} \mathrm{~N}_{14.8} \mathrm{O}_{6} \mathrm{U}_{2}$	$\mathrm{C}_{95} \mathrm{H}_{105} \mathrm{KN}_{12} \mathrm{O}_{16} \mathrm{U}_{3}$
Crystal size [mm]	$0.13 \times 0.07 \times 0.04$	$0.32 \times 0.10 \times 0.05$	$0.25 \times 0.21 \times 0.08$	$0.43 \times 0.27 \times 0.23$
Crystal system	Triclinic	Trigonal	Triclinic	Triclinic
Space group	P-1	$P \overline{3} c 1$	P-1	P-1
V [$\AA 3]$	2700.5(9)	3238.8(5)	2064.0(16)	4772.1(4)
$\mathrm{a}[\AA]$	11.0515(12)	15.2336(10)	11.872(3)	13.9739(7)
$\mathrm{b}[\AA]$	15.966(4)	15.2336(10)	12.416(6)	17.1424(5)
$\mathrm{c}[\AA]$	16.284(2)	16.1157(10)	15.141(8)	21.3152(9)
$\alpha\left[^{\circ}\right]$	70.59(2)	90	91.66(4)	84.872(3)
$\beta\left[{ }^{\circ}\right]$	85.304(12)	90	107.63(3)	82.993(4)
$\gamma\left[{ }^{\circ}\right]$	87.757(14)	120	102.69(3)	70.549(4)
Z	1	4	1	2
Absorption coefficient [mm-1]	4.287	4.324	4.324	4.941
F (000)	1050	1624	989.6	2364.0
T [K]	100(2)	100(2)	100(2)	140(10)
Total no. reflexions	30.886	39917	30691	31290
Unique $[\mathrm{R}(\mathrm{int})]$$\quad$ reflexions	9511 [0.1473]	2488 [0.0942]	9446 [0.1031]	16858 [0.0473]
Final $[\mathrm{I}>2 \sigma(\mathrm{I})]$$\quad$ R indice	0.0812	0.0549	0.0766	0.0740
Largest diff. peak and hole [eA-3]	$\begin{aligned} & \hline 1.182 \\ & \text { and }-1.491 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.622 \\ & \text { and }-1.056 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.036 \\ \text { and }-1.705 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.504 \\ & \text { and }-2.751 \\ & \hline \end{aligned}$
GOF	1.024	1.109	1.100	1.078

