Supporting Information

Carbon Dioxide Reduction by Multimetallic Uranium(IV) Complexes Supported by Redox-Active Schiff Base Ligands

Nadir Jori,^a Marta Falcone,^a Rosario Scopelliti^a and Marinella Mazzanti^{*a}

[a] Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

*Corresponding authors: E-mail: marinella.mazzanti@epfl.ch, ISIC/EPFL.

Table of Contents

1.	NMR spectra	S3
2.	Mass spectra	S14
3.	Electrochemistry	S15
4.	UV-vis spectroscopy	\$20
5.	X-ray crystallographic data	S21

1. NMR spectra

Figure S1: ¹H NMR spectrum (400 MHz, pyr-d₅, 298 K) of K₃⁴BuTrensal

Figure S4: ¹H -NMR spectrum (400 MHz, THF-d₈, 298 K) of isolated compound of synthesis of [U₂-¹Bu-bis-trensal], complex 1a

Figure S5: ¹H NMR spectrum (400MHz, THF-d₈, 298 K) of [U(trensal)][OTf], complex 2

Figure S6: ¹H NMR (400 MHz, THF-d₈, 298K) spectrum of reaction mixture of 1 with 100 eq ¹³CO₂ after 6 days

Figure S7: ¹³C{¹H} NMR (151 MHz, THF-d₈, 298K) spectrum of reaction mixture of **1** with 100 eq ¹³CO₂ after 6 days.

Figure S8: ¹³C{¹H} NMR spectrum (100 MHz, DMSO-d₆, 298 K) powder from reaction 1 + 100 eq ¹³CO₂ after filtering and dissolving the powder in DMSO-d₆.

Figure S9: ¹H NMR spectrum (400MHz, THF-d₈, 298 K) evolution of 1 with 2 eq ¹³CO₂

Figure S10: ${}^{13}C{}^{1H}$ NMR (151 MHz, D₂O, 298K) of the supernatant of reaction mixture of 1 with 2 eq of ${}^{13}CO_2$ after 20 days, after removing the solvent and dissolving in basic D₂O (pD= 12). CD₃CN was used as internal reference for the chemical shifts.

Figure S11: ${}^{13}C{}^{1}H$ NMR (151 MHz, D₂O, 298K) of the solid of reaction mixture of 1 with 2 eq of ${}^{13}CO_2$ after 20 days, dissolving in basic D₂O (pD= 12). CD₃CN was used as internal reference for the chemical shifts.

Figure S12: ¹H NMR spectrum (400MHz, THF-d₈, 298 K) evolution of 1 + 10 eq ¹³CO₂.

Figure S13: ¹H NMR spectrum (400 MHz, pyr-d₅, 298 K) of supernatant from reaction **1** + 10 eq ¹³CO₂ after centrifuging and removing the solvent in vacuo.

Figure S14: ¹³C{¹H} NMR spectrum (100 MHz, pyr- d_5 , 298 K) of supernatant from reaction 1 + 10 eq ¹³CO₂ after centrifuging and removing the solvent in vacuo.

Figure S15: ¹H NMR spectrum (400 MHz, THF-d₈, 298 K) evolution of reaction mixture **3** + 4 eq AgOTf.

Figure S16: ¹H NMR spectrum (400 MHz, THF-d₈, 298 K) of reaction mixture **3** + 2 eq AgOTf after filtering.

Figure S17: ¹H NMR spectrum (400 MHz, THF-d₈, 298 K) comparison of reaction mixture **3** + 4 eq ¹³CS₂. (After two days and before) **.**

Figure S18: ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, THF-d₈, 298 K) of reaction mixture 3 + 4 eq ${}^{13}CS_2$ after two days.

Figure S19: ¹H NMR spectrum (DMSO-d₆, 400 MHz, 298K). of the reaction mixture after 2 days addition of 4 eq ¹³CS₂ to a THF solution of **3** at room temperature, removal of the solvent and dissolution in DMSO-d₆.

Figure S20: ${}^{13}C{}^{1H}$ NMR spectrum (DMSO-d₆, 100 MHz, 298K) of the reaction mixture after 2 days addition of 4 eq ${}^{13}CS_2$ to a THF solution of 3 at room temperature, removal of the solvent and dissolution in DMSO-d₆.

Figure S21: ¹³C{¹H} NMR (THF-d₈, 151 MHz, 298K) spectrum of the reaction mixture after 6 days addition of 1 equivalent ¹³CO₂ to a THF solution of **3** at room temperature.

Figure S22: Quantitative ${}^{13}C{}^{1}H$ NMR (D₂O, 151 MHz, 298K) spectrum of the reaction mixture after addition of 1 equivalent ${}^{13}CO_2$ to a THF solution of **3** at room temperature, removal of the solvent and dissolution in basic D₂O (pD=12) using ${}^{13}C$ -labelled sodium acetate as internal standard.

Figure S23: ¹H NMR spectrum (THF-d₈, 400 MHz, 298K) of the reaction mixture, after addition of 2 eq ¹³CO₂ to a THF solution of **3** at room temperature

Figure S24: Quantitative ¹³C {¹H} NMR (D₂O, 151 MHz, 298K) spectrum of the reaction mixture after addition of 2 equivalent ¹³CO₂ to a THF solution of **3** at room temperature, removal of the solvent and dissolution in basic D₂O (pD=12) using ¹³C-labelled sodium acetate as internal standard.

Figure S25: ¹H NMR (THF-d₈, 400 MHz, 298K) spectra comparison of the evolution of the reaction mixture of the addition 4 equivalents ¹³CO₂ to a THF solution of **3** at room temperature.

Figure S26: ${}^{13}C{}^{1}H$ NMR (THF-d₈, 151 MHz, 298K) spectrum of the reaction mixture after 6 days addition of 4 equivalents ${}^{13}CO_2$ to a THF solution of 3 at room temperature.

Figure S27: Quantitative ${}^{13}C{}^{1}H$ NMR (D₂O, 151 MHz, 298K) spectrum of the reaction mixture after 6 days addition of 4 equivalents ${}^{13}CO_2$ to a THF solution of **3** at room temperature, removal of the solvent and dissolution in basic D₂O (pD=12) using ${}^{13}C$ -labelled sodium acetate as internal standard.

Figure S28: ¹H NMR (DMSO-d₆, 400 MHz, 298K) spectrum of the powder of the reaction mixture after addition of 100 equivalents ¹³CO₂ to a THF solution of **3** at room temperature.

Figure S29: ¹³C{¹H} NMR (THF-d₈, 151 MHz, 298K) spectrum of the reaction mixture after 6 days addition of 100 equivalents ¹³CO₂ to a THF solution of **3** at room temperature.

Figure S30: Quantitative ${}^{13}C{}^{1}H$ NMR (D₂O, 151 MHz, 298K) spectrum of the reaction mixture after 6 days addition of 100 equivalents ${}^{13}CO_2$ to a THF solution of **3** at room temperature, removal of the solvent and dissolution in basic D₂O (pD=12) using ${}^{13}C$ -labelled sodium acetate as internal standard.

2. Mass spectra

Figure S31: MS spectra of complex 1: experimental (up) and theoretical (down) profiles of the peak at m/z 1387

Figure S32: MS spectra of reaction mixture of 1 with CO_2 after 6 days: experimental (up) and theoretical (down) profiles of the peak at m/z 1431

3. Electrochemistry

Figure S33 Room temperature cyclic voltammogram of complex [U₂(bis-trensal)] **1** recorded in 0.1 M [NBu₄][PF₆] in 4 mM pyridine solution at 100 mV/sec scan rate, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S34 Room temperature cyclic voltammogram of complex [U₂(bis-trensal)] **1** recorded in 0.1 M [NBu₄][PF₆] in 4 mM pyridine solution, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂], at different scan rates 50 mV/sec (blue), 100 mV/sec (orange), 500 mV/sec (grey) and 1000 mV/sec (yellow).

Figure S36 Room temperature cyclic voltammogram of complex [U(trensal)][OTf] **2** recorded in 0.1 M [NBu₄][PF₆] in 4 mM pyridine solution, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂], at different scan rates 50 mV/sec (blue), 100 mV/sec (orange), 500 mV/sec (grey) and 1000 mV/sec (yellow).

Figure S37 Room temperature cyclic voltammogram of complex $[{K(THF)_3}_2U_2(cyclo-trensal)]$ 3-THF recorded in 0.1 M $[NBu_4][PF_6]$ in 4 mM pyridine solution in presence of excess cryptand, at 100 mV/sec scan rate, referenced against $[Fe(C_5H_5)_2]^+/[Fe(C_5H_5)_2]$.

Figure S38 Room temperature cyclic voltammogram of complex [{K(THF)₃}₂U₂(cyclo-trensal)] 3-THF recorded in 0.1 M [NBu₄][PF₆] in 4 mM pyridine solution in presence of excess cryptand, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂], at different scan rates 50 mV/sec (blue), 100 mV/sec (orange), 500 mV/sec (grey) and 1000 mV/sec (yellow).

Figure S39 Room temperature cyclic voltammogram of complex [U₂(bis-trensal)] **1** recorded in 0.1 M [NBu₄][PF₆] in 4 mM pyridine solution at 100 mV/sec scan rate, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

Figure S40 Room temperature cyclic voltammogram of complex [U₂(bis-trensal)] **1** recorded in 0.1 M [NBu₄][PF₆] in 4 mM THF solution at 100 mV/sec scan rate, referenced against [Fe(C₅H₅)₂]⁺/[Fe(C₅H₅)₂].

4. UV-vis spectroscopy

Figure S42 UV-vis spectrum at room temperature of a 5mM solution of [U(trensal)][OTf], 2 in THF.

Figure S43 UV-vis spectrum at room temperature of a 5mM solution of [U(bis-trensal)], 1 in THF.

Figure S44 UV-vis spectrum at room temperature of a 5mM solution of $[{K(THF)_3}_2U_2(cyclo-trensal)], 3-THF$ in THF.

5. X-ray crystallographic data

Figure S45 Molecular structure of complex 4. Hydrogen atoms and THF molecules were omitted for clarity. Color code: uranium (green), nitrogen (blue), oxygen (red), carbon (grey), C-C bond between imine (yellow).

Table S1. X-ray crystallographic data.

Compound	1a	2	3-Py. (pyridine)	4
Formula	$C_{102}H_{150}N_8O_6U_2$	$C_{28}H_{27}F_{3}N_{4}O_{6}SU$	C ₈₈ H ₈₈ K ₂ N _{14.8} O ₆ U ₂	C ₉₅ H ₁₀₅ KN ₁₂ O ₁₆ U ₃
Crystal size [mm]	0.13×0.07×0.04	0.32×0.10×0.05	0.25×0.21×0.08	0.43×0.27×0.23
Crystal system	Triclinic	Trigonal	Triclinic	Triclinic
Space group	P -1	$P\bar{3}c1$	P -1	P -1
V [Å3]	2700.5(9)	3238.8(5)	2064.0(16)	4772.1(4)
a [Å]	11.0515(12)	15.2336(10)	11.872(3)	13.9739(7)
b [Å]	15.966(4)	15.2336(10)	12.416(6)	17.1424(5)
c [Å]	16.284(2)	16.1157(10)	15.141(8)	21.3152(9)
α [°]	70.59(2)	90	91.66(4)	84.872(3)
β [°]	85.304(12)	90	107.63(3)	82.993(4)
γ [°]	87.757(14)	120	102.69(3)	70.549(4)
Z	1	4	1	2
Absorption coefficient	4.287	4.324	4.324	4.941
[mm-1]				
F (000)	1050	1624	989.6	2364.0
T [K]	100(2)	100(2)	100(2)	140(10)
Total no. reflexions	30.886	39917	30691	31290
Unique reflexions	9511 [0.1473]	2488 [0.0942]	9446 [0.1031]	16858 [0.0473]
[R(int)]				
Final R indice	0.0812	0.0549	0.0766	0.0740
[I>2σ(I)]				
Largest diff. peak and	1.182	2.622	2.036	4.504
hole [eA-3]	and -1.491	and -1.056	and -1.705	and -2.751
GOF	1.024	1.109	1.100	1.078