Supporting Information

Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria

Chunmei Li^{1, 2}, Jinyi Zhang², Hui Jiang¹, Xuemei Wang^{1*}, Juewen Liu^{2*}

¹ State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China Email: xuewang@seu.edu.cn

² Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada Email: liujw@uwaterloo.ca **Methods of using gel permeation chromatographic for the separation of CDs.** In brief, the crude CD products (dispersed in Milli-Q water) were passed through a column (stationary phase, silica 400 mesh) using water as an eluent to separate it based on the following conditions: mobile phase, water; flow rate, 2 mL·min⁻¹; injection volume, 100 mL.

Table	S1	Detailed	information	about	nanoceria,	GO	and AuN	Ps.
-------	-----------	----------	-------------	-------	------------	----	---------	-----

Nanomaterials	Size	Morphology	Surface Ligand	^{<i>a</i>} Maximum Absorption Wavelength	^{<i>a</i>} Source of Information
nanoceria	~ 5 nm	not well- defined shape	N/A	~290 nm	Reference 1
AuNPs	~13 nm	spherical	carboxyl and hydroxyl groups	520 nm	Reference 2
GO	1~5 μm	thin flake/film	carboxyl and hydroxyl groups	~235 nm	https://www.ac smaterial.com/

^{*a*} The maximum absorption wavelengths of nanoceria, GO and AuNPs were obtained from Figure S8 below.

Reference 1: Pautler, R.; Kelly, E. Y.; Huang, P. J.; Cao, J.; Liu, B.; Liu, J., Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Appl. Mater. Interfaces 2013, 5, 6820-6825.

Reference 2: Liu, J.; Lu, Y., Preparation of Aptamer-Linked Gold Nanoparticle Purple Aggregates for Colorimetric Sensing of Analytes. Nat. Protoc. 2006, 1, 246-252.

Figure S1 Characterization of the purified CDs. (a) The FL excitation (Ex) and emission (Em) spectra of the CDs, both excitation and emission slit width were 5 nm. Inset: Photographs of the CDs under an ultraviolet (UV) light (left) and a daylight lamp (right). (b) Photostability of the CDs under continuous irradiation for 100 min, excitation wavelength: 344 nm; emission wavelength: 440 nm. FL of the CDs (100 ng·mL⁻¹) and CDs mixed with CeO₂ (98 μ g·mL⁻¹) (CD/CeO₂) at (c) different pH solutions and (d) different concentrations of salt (NaCl) calculated based on FL emission intensity at 440 nm.

Figure S2 (a) FL quenching of the CDs as a function of concentration of CeO₂ NPs before (black) and after (red) centrifugation, calculated by the FL emission intensity at 440 nm; excited at 344 nm. Photographs of the CDs mixed with the CeO₂ NPs (20 μ g·mL⁻¹) under an UV light (**b**) and a daylight lamp (**c**) before centrifugation. CDs mixed with CeO₂ NPs (20 μ g·mL⁻¹) under an UV light (365 nm) (**d**) and a daylight lamp (**e**) after centrifugation. The pellets are highlighted.

Figure S3 (a) FL quenching of CDs as a function of concentration of GO before (black) and after (red) centrifugation, calculated by FL emission intensity at 440 nm; excited at 344 nm. The CDs mixed with different concentrations GO under a daylight lamp (b) and an UV light (c) before centrifugation. CDs mixed with different concentrations GO under a daylight lamp (d) and an UV light (365 nm) (e) after centrifugation.

Figure S4 (a) FL quenching of CDs as a function of concentration of AuNPs before (black) and after (red) centrifugation, calculated by FL emission intensity at 440 nm; excited at 344 nm. The CDs mixed with different concentrations AuNPs under a daylight lamp (b) and an UV light (365 nm) (c) before centrifugation. CDs mixed with AuNPs (100 μ g·mL⁻¹) under a daylight lamp (d) and an UV light (e) after centrifugation.

Figure S5 Adsorption kinetics of the CDs on nanoceria when the concentration of nanoceria was 2.4 μ g·mL⁻¹.

Figure S6 (a) FL of the calcein at different pH solutions, calculated by FL emission intensity at 512 nm; (b) FL spectra of the calcein (1.5 μ M) in different concentrations of HEPES (pH 7.4); excited at 490 nm, both excitation and emission slit width were 5 nm. The optimum concentration of HEPES was 1 mM. (c) FL of the calcein (1.5 μ M) in different concentrations of NaF or phosphate in HEPES buffer (pH 7.4, 1 mM). (d) Adsorption kinetics of calcein (1.5 μ M) on nanoceria (4.9 μ g·m L⁻¹).

Figure S7 Kinetics of FL indicative of interaction effect of FAM-DNA to CDs/CeO₂ (50 μ g·mL⁻¹) mixtures by adding FAM-DNA into CDs/CeO₂ mixtures (blue). Kinetics of FL indicative of interaction effect of CDs to FAM-DNA/CeO₂ (2.5 μ g·mL⁻¹) mixtures by adding CDs into FAM-DNA/CeO₂ mixtures (green). The concentrations of CDs in CDs/CeO₂ and FAM-DNA in FAM-DNA/CeO₂ were 100 ng·mL⁻¹ and 50 nM, respectively.

Figure S8 UV-vis absorption spectra of nanoceria (1 μ g·mL⁻¹), GO (0.1 μ g·mL⁻¹) and AuNPs (0.1 μ g·mL⁻¹).