Supplementary Data

NIR Remote-controlled "Lock-Unlock" Nanosystem for Imaging Potassium Ions in Living Cells

Mei-Rong Cui,¹ Li-Xian Chen,¹ Xiang-Ling Li,^{*,1,2} Jing-Juan Xu,^{*,1} Hong-Yuan Chen¹

¹State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China.

²College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

*Corresponding author: Tel/fax: +86-25-89687924, Email: xlli@nju.edu.cn. (X.-L. L), xujj@nju.edu.cn (J.-J. Xu)

Table of contents

Table S1	
Supplemental Figures	
Figure S1	
Figure S2	
Figure S3	
Figure S4	
Figure S5	
Figure S6	
Figure S7	S6
Figure S8	S6
Figure S9	
Figure S10	
Figure S11	
Figure S12	
Figure S13	
Reference	

Name	Sequence (5'-3')
A1	Texas-Red-GAGTATTTC <u>TCTACGGGTTAGGGTTAGGGTTAGGGT</u> -
	Cy3
	K ⁺ aptamer
three-base mismatched	Texas-Red-GAGTATTTCTCTACGGGTTAGCGTTAGAGTTAGCGT-
strand A2	Cy3
C1	CTAACCCGTAGAGAAATACTCT ₍₁₀₎ -SH

Table S1. Sequences of oligonucleotides used in this work.

Supporting Figures

Figure S1. UV-*vis* absorption spectra of SiO₂-NH₂ (red), SiO₂-gold seeds (blue), AuNS (green) and DSAP-AuNS (black) in buffer solution.

Figure S2. The energy dispersive spectrum of AuNS.

Figure S3. Zeta potential of SiO₂-NH₂, SiO₂-gold seeds, AuNS and DSAP-AuNS.

Figure S4. TEM images of SiO_2 -NH₂ (a), SiO_2 -gold seeds (b), AuNS (c) and DSAP-AuNS (d), scale bar: 200 nm.

Figure S5. Fluorescence spectra of DSAP and DSAP-AuNS, $\lambda ex = 590$ nm.

Figure S6. Fluorescence-based method to calculate the number of DSAP loading on AuNS: (a) calibration curve of the fluorescence intensity of Texas-Red versus the concentration of DSAP; (b) Fluorescence emission spectrum of the released DSAP from the ME treated DSAP-AuNS, $\lambda ex = 590 \text{ nm}$, $\lambda em = 612 \text{ nm}$.

As the concentration of DSAP increased, the fluorescence intensity was enhanced in a linear way from 5.00×10^{-9} M to 5.00×10^{-8} M, I_F = 271.00 + 61.52 × C_{DSAP} (10⁻⁹ M). Secondly, mercaptoethanol (ME) was brought to the AuNS solution to achieve a final concentration of 20 mM. After incubated overnight with shaking at room temperature, the oligonucleotides were released. Then the released DSAP were separated *via* centrifugation, and the mean fluorescence intensity was measured to be ~3375. So based on the calibration curve, the concentration of released DSAP was calculated to be 2.70×10⁻⁸ M. And the concentration of AuNS used in our work was 6.0 pM. Therefore, the number of DSAP loaded on each AuNS was calculated to be ~ 4500.

Figure S7. Fluorescence spectra of DSAP-AuNS with (red line) or without NIR irradiation (black line), $\lambda ex = 590$ nm.

Figure S8. FRET signal R (F_A/F_D) of DSAP-AuNS in the presence of various biological cations at their physiological concentrations: blank, Na⁺ (15 mM), Ca²⁺ (2.0 mM), Mg²⁺ (2.0 mM), Cu²⁺ (50 μ M), Zn²⁺ (2.0 mM), Fe²⁺ (50 μ M), K⁺ (150 mM).

Figure S9. Confocal microscopy images of HeLa cells treated with DSAP (a) or DSAP-AuNS (b) under NIR irradiation, channel of Hoechst 33342, λ ex: 405 nm, λ em: 415-460 nm; channel of Texas Red, λ ex: 590 nm, λ em: 600-640 nm. Scale bar: 10 μ m.

Figure S10. Confocal microscopy images of HeLa cells pretreated with DSAP-AuNS and further stained with Lyso-Tracker GreenDND-26, the red fluorescence from Texas-red shows the location of DSAP-AuNS. The green fluorescence from Lysotracker shows the location of acidic organelles such as lysosome and endosome. Scale bar: 10 μm.

Figure S11. Cell viability of HeLa cells incubated with 14 nM DSAP, 3 pM bare AuNS, 3 pM DSAP-AuNS, 3 pM DSAP-AuNS + NIR irradiation (from the left to right). Error bars represent the standard deviation of three replicates.

Figure S12. Confocal microscopy images of HeLa cells stand for different times after treated with DSAP-AuNS. Channel 1(Cy3), λ_{ex} : 543 nm, λ_{em} : 555-590 nm; Channel 2 (Texas Red), λ_{ex} : 590 nm, λ_{em} : 600-640 nm. Scale bar: 250 μ m.

Figure S13. The standard potassium ion assay of HeLa cells treated with reagents (K^+ efflux stimulation amphotericin B, K^+ influx inhibitors bumetanide and ouabain) for different times, the PBFI fluorescence ratio was positively correlated with the intracellular content of K^+ .¹

Reference

(1) Andersson, B.; Janson, V.; Behnam-Motlagh, P.; Henriksson, R.; Grankvist, K. *Toxicol. in Vitro* **2006**, *20*, 986-994.