Supporting Information for

Activated Carbon by One-Step Calcination of Deoxygenated Agar for High Voltage Lithium Ion Supercapacitor

Ming Zhang,^{†,‡,⊥} Junfang Cheng,^{§,⊥} Lixing Zhang,[∥] Yaoting Li,[‡] MaoSung Chen,[‡]

Yao Chen^{∗,∥} and Zhongrong Shen^{∗,†,‡}

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China [‡]The Laboratory of Rare-Earth Functional Materials and Green Energy, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China

§International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu

University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China

 $^{\perp}$ M.Z. and J.C. contributed equally to this work.

*E-mail: y.chen@wust.edu.cn (Y. C.).

*E-mail: z-shen@fjirsm.ac.cn (Z. S.),

Number of pages: 7

Number of figures: 4

Number of tables: 0

Content

1.	Calculation	
2.	Supporting Figures	
Ele	ectrode potential and potential stability window	.Figure S1
Di	fferential capacitance curves	.Figure S2
IR	drops	.Figure S3
XF	PS spectra	.Figure S4

1. Calculation

The Specific capacitance values are calculated via equation (1), where *C* [F g⁻¹] is the specific capacitance, *m* [mg] is the mass loading of AC, v [V s⁻¹] is the scan rate, V_{\min} [V vs RHE] is the minimum electrode potential, V_{\max} [V vs RHE] is the maximum potential and *i* [mA] is the current., the integral part is the area of CV curve at each scan rate.

$$C = \frac{1000}{mv(V_{\text{max}} - V_{\text{min}})} \int_{V_{\text{min}}}^{V_{\text{max}}} i(V) dV \qquad (1)$$

Specific energy was calculated by integrating the area beneath the galvanostatic discharge curve of hybrid lithium ion supercapacitor with equation (2), where E [Wh kg⁻¹] is the energy density, U [V] is the cell working voltage, i [mA] is the discharge current, m [mg] is the mass loading of AC, t_{min} [s] is the discharge starting time and t_{max} [s] is discharge ending time.

$$E = \frac{1000i}{3600m} \int_{t_{\min}}^{t_{\max}} U(t) dt \qquad (2)$$

Specific power was calculated with equation (3), where P [W kg⁻¹] is specific power, E [Wh kg⁻¹] is the specific energy and Δt [s] is the discharge time.

$$P = \frac{3600E}{\Delta t} \qquad (3)$$

2. Supporting Figures

Figure S1. Electrode potential and potential stability window for deoxygenated agar-derived AC electrode in 21 m LiTFSI "water-in-salt" at 25 °C and 101.325 kPa. The actually operating potential window of hybrid lithium-ion supercapacitor is between 2.14 V and 4.04 V.

Figure S2. Differential capacitance curves from the charge/discharge curves of activated carbon electrode in the hybrid lithium ion supercapacitor at various current rates from 0.05 to 1.0 mA cm^{-2} .

Figure S3. IR drops of hybrid lithium-ion supercapacitor at various current rates.

Figure S4. C1s XPS spectra of deoxygenated agar-derived AC before and after cycles.