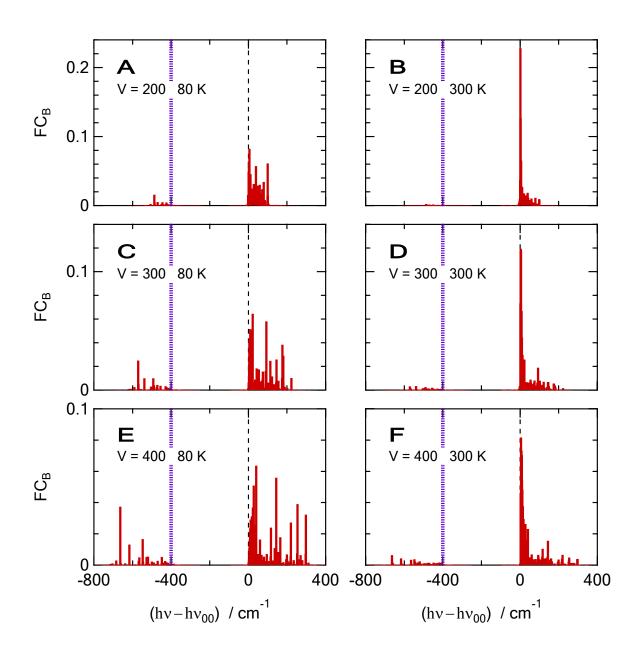

Supporting Information

Dynamics of the Excited State in Photosynthetic Bacterial Reaction Centers


William W. Parson[†]

[†]Department of Biochemistry University of Washington Seattle, WA 98195 Email: parson@u.washington.edu

Figures S1 and S2 show spectra of the calculated Boltzmann-weighted Franck-Condon factors (FC_B) for a model identical to that used to generate Figures 1 and 2 of the main text except that the three vibrational modes had energies of 20, 50 and 90 cm⁻¹ and dimensionless displacements (Δ) of 1.1, 0.7 and 0.2, respectively, in the diabatic CT state relative to the ground states (Huang-Rhys parameters $S = \Delta^2/2$ of 0.605, 0.245 and 0.020). The displacements in the exciton state with respect to the ground state were 0.1 for all three modes (S = 0.005), the same as in Figures 1 and 2. Excitation energies (hv) are expressed relative to the 0-0 excitation of the diabatic exciton state (hv_{00} , *vertical dashed line*). The 0-0 excitation energy of the diabatic CT state (*vertical dotted line*) was either 400 cm⁻¹ above hv_{00} (Figure S1), or 400 cm⁻¹ below hv_{00} (Figure S2). The electronic-interaction matrix element (|V|) was either 0, 200, 300 or 400 cm⁻¹ and the temperature either 80 K or 300 K, as indicated. FC_B was calculated by equation (1) of the main text.

Figure S1. Boltzmann-weighted Franck-Condon factors (FC_B) for absorption at either 80 K (*left*) or 300 K (*right*) by a system in which exciton and CT excitations are coupled to three vibrational modes with the parameters given above. The 0-0 excitation energy of the diabatic CT state (*vertical dotted line*) was 400 cm⁻¹ above hv_{00} .

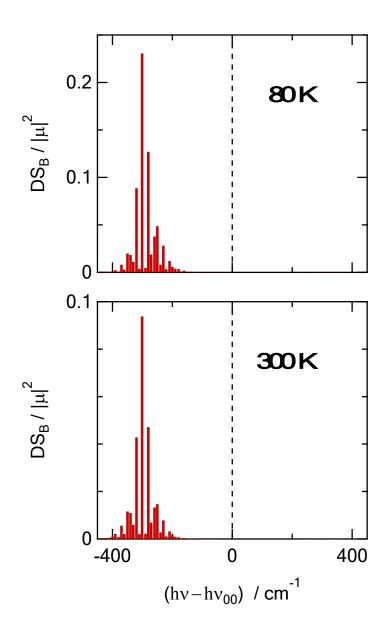
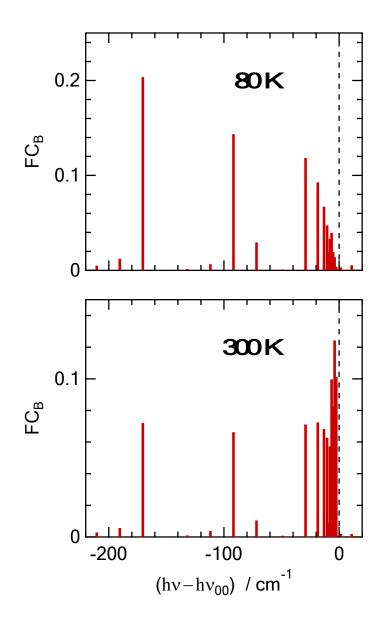

Figure S2. The same as Figure S1 except that the 0-0 excitation energy of the diabatic CT state (*vertical dotted line*) was 400 cm⁻¹ below hv_{00} .

Figure S3 shows calculated Boltzmann-weighted dipole strengths of the vibronic absorption lines of a homodimer with strong exciton interactions but no CT states. Each of the monomers is assumed to have a single excited state and three harmonic vibrational modes with energies of 20, 50 and 90 cm⁻¹ and Huang-Rhys factors of 0.605, 0.245 and 0.020, respectively (the same as those of the CT state in Figures S1 and S2). The exciton-interaction matrix element is +300 cm¹ (the same as in Figure S1E). The angle between the transition dipoles of the monomers is 165°, resembling the angle between the Q_y transitions of bacteriochlorophylls P_L and P_M in the reaction center. With this geometry, most of the dimer's dipole strength appears in an absorption band 300 cm⁻¹ to the red of the monomers' ΔE_{00} . Lowering the temperature from 300 to 80 K strengthens vibronic lines on the blue side of the band relative to those on the red side, shifting the spectrum slightly to the *blue*.

The Boltzmann-weighted dipole strengths in Figure S3 were calculated as


$$DS_{B}(\nu,T) = \sum_{i=1}^{l} B(i,T) \sum_{j=1}^{J} \delta_{h\nu,E_{j}-E_{i}} \left| \sum_{l=1}^{L} c_{l}^{i} \overline{\mu_{l}} \prod_{m} \Omega(m,i,l) \right|^{2}.$$
 (S1)

Here *I* and *L* are, respectively, the total numbers of vibronic ground and excited basis states, and *J* is the number of the dimer's excited eigenstates; E_i and E_j are the energies of ground state *i* and excited eigenstate *j*; $B(i,T) = Z^{-1}exp(-E_i/k_BT)$ is the Boltzmann population of ground state *i* at temperature T; $Z = \sum_{i}^{l} exp(-E_i/k_BT)$; the delta function δ_{hv,E_j-E_i} is 1 if $hv = E_j - E_i$, and zero otherwise; c_i^l is the coefficient for excited basis state *l* in eigenvector *j*; $\Omega(m,i,l)$ is the overlap integral for excitation of harmonic oscillator *m* from ground level *i* to exciton level *l*; and $\overrightarrow{\mu_l}$ is the electronic transition dipole for basis excitation *l*. Equation (1) of the main text is a generalization of equation (S1) for a system that includes CT states, but with the dependence on the vectorial factors $\overrightarrow{\mu_l}$ omitted because these are assumed to have the same magnitude and orientation for all the exciton basis transitions and a magnitude of zero for CT transitions.

Figure S3. Stick spectra of the Boltzmann-weighted vibronic dipole strength (DS_B) at (top) 80 and (*bottom*) 300 K for the homodimer described above, in which the two molecules have strong exciton interactions but no CT interactions. The divisor for the ordinate scale ($|\mu|^2$) is the squared amplitude of the monomers' electronic transition dipole (μ_1 in equation S1), which is assumed to be the same for all vibrational levels (l). Energies are expressed relative to the monomers' 0-0 excitation energy (hv_{00} , *dashed line*).

Figure S4 and Table S1 illustrate the effects of temperature on the Boltzmann-weighted Franck-Condon factors (FC_B) for a system with ground, exciton and CT electronic states and a single, harmonic vibrational mode. The zero-point energy of the CT basis state is taken to be 400 cm⁻¹ above the corresponding energy of the exciton state, and the electronic-interaction matrix element (|V|) that mixes exciton and CT states is 400 cm⁻¹. The vibrational mode has an energy of 20 cm⁻¹ and Huang-Rhys factors of 0.005 and 0.605 for conversion of the ground state to the exciton and CT states, respectively (the same as the lowest-frequency mode in Figures S1 and S2). The figure shows the calculated spectrum of $FC_B(v,T)$ in the region of the main absorption band, which lies to the red of the of the exciton basis state's 0-0 energy (hv_{00}). When the temperature is decreased from 300 to 80 K, vibronic lines farther to the red gain strength relative to those at higher energies as they do in the three-mode models used for Figures 1 and S1. Table S1 gives the factors that enter into selected values of $FC_B(v,T)$ at 80 and 300 K, according to equation (1) of the main text. The lines close to hv_{00} in the spectrum for 300 K are dominated by excitations to relatively high eigenstates from correspondingly high vibrational levels of the ground state, which have much smaller Boltzmann factors (B(i,T)) at 80 K.

Figure S4. Calculated Boltzmann-weighted Franck-Condon factors for a system with three electronic states (ground, exciton and CT) and a single vibrational mode, at 80 K (*top*) and 300 K (*bottom*). The model and the values of its parameters are given above. The figure shows only the spectral region of the system's main absorption band.

i	j	l	$h\nu$ - $h\nu_{00}$	$ \Omega(i,l) ^2$	$ c_l^j ^2$	B(i,T)	FC(i,j,l,T)	B(i,T)	FC(i,j,l,T)
			cm ⁻¹	-		300 K	300 K	80K	80 K
1	1	1	-170.4	0.99501	0.67593	0.10721	0.07210	0.30236	0.20335
1	1	2	-170.4	0.00498	0.05574	0.10721	0.00003	0.30236	0.00008
							0.07213		0.20343
2	2	1	-91.8	0.00498	0.09448	0.09740	0.00005	0.21101	0.00010
2	2	2	-91.8	0.98509	0.68982	0.09740	0.06619	0.21101	0.14339
2	2	3	-91.8	0.00246	0.04372	0.09740	0.00001	0.21101	0.00002
							0.06625		0.14351
3	3	2	-29.2	0.00246	0.09112	0.08849	0.00002	0.14725	0.00003
3	3	3	-29.2	0.98017	0.81996	0.08849	0.07112	0.14725	0.11835
3	3	4	-29.2	0.00163	0.00876	0.08849	< 5×10 ⁻⁶	0.14725	< 5×10 ⁻⁶
							0.07114		0.11838
4	4	3	-18.5	0.00163	0.02080	0.08040	< 5×10 ⁻⁶	0.10276	< 5×10 ⁻⁶
4	4	4	-18.5	0.97690	0.92285	0.08040	0.07248	0.10276	0.09265
							0.07248		0.09265
10	10	10	-6.5	0.96722	0.98712	0.04522	0.04317	0.01187	0.01133
11	11	11	-6.5	0.96625	0.98852	0.04108	0.03924	0.00828	0.00791
							0.08241		0.01924
10	10	10	2.0	0.0(520	0.000/1	0.02722	0.02566	0.00570	0.00550
12	12	12	-3.9	0.96538	0.98964	0.03732	0.03566	0.00578	0.00552
13	13	13	-3.9	0.96457	0.99056	0.03391	0.03240	0.00403	0.00385
14	14	14	-3.9	0.96383	0.99132	0.03081	0.02944	0.00282	0.00269
15	15	15	-3.9	0.96314	0.99167	0.02799	0.02674	0.00196	0.00188
							0.12424		0.01394

Table S1: Components of $FC_{B}(v,T)$ in a System with 3 Electronic States (Ground, Exciton and CT) and 1 Vibrational Mode¹

¹See the text above for the electronic energies and other parameters of the model.

i = vibrational level of ground state; j = excited eigenstate; l = vibrational level of exciton basis state.

 $hv - hv_{00}$ = excitation energy relative to ΔE_{00} for the exciton state.

 $\Omega(i,l)$ = nuclear overlap integral for excitation from ground vibrational level *i* to exciton level *l*. c_l^i = coefficient for exciton basis state *l* in eigenvector *j*.

B(i,T) = Boltzmann factor for the relative population of ground level *i* at temperature *T*.

 $FC(i,j,l,T) = B(i,T) \times |c_l^j|^2 \times |\Omega(i,l)|^2$ (contribution of basis states *i* and *l* to the Boltzmann-weighted Franck-Condon factor for frequency v at temperature *T*).

Entries in **Bolt font** are the sums of FC(i,j,l,T) for each energy and temperature.