## Supporting Information

# Two zinc-viologen interpenetrating frameworks with straight and offset stacking modes respectively showing different photo/thermal responsive characters 

Jie Zhang, ${ }^{\text {a,b }}$ Yu Zeng, ${ }^{a}$ Haochao Lu, ${ }^{\text {a }}$ Xiaohan Chen, ${ }^{a}$ Xianzhi Yuan ${ }^{\text {a }}$ and Zhiyong Fu ${ }^{\text {a, }, ~}$
${ }^{a}$ Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
${ }^{\mathrm{b}}$ State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
'State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, P. R. China.

E-mail: zyfu@scut.edu.cn;


Figure S1. Thermogravimetric (TG) curves of compounds $\mathbf{1}$ and $\mathbf{2}$.

TG analyses indicate that two major weight losses are observed for compound $\mathbf{1}$ and $\mathbf{2}$ (Figure S1). The first weight loss of $3.23 \%$ ( $3.17 \%$ for calculated) and $3.31 \%$ ( $3.39 \%$ for calculated) started at ca. $150{ }^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, corresponding to the loss of the guest water molecules for $\mathbf{1}$ and $\mathbf{2}$ respectively. Their curves remain no changes in weight up to $330^{\circ} \mathrm{C}$ and $375^{\circ} \mathrm{C}$. The decomposition of the frameworks occurs at higher temperature and they give the final thermal decomposition product ZnO and carbon species after the gas leaving of CO , $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ and NO during the heating process. ${ }^{[\mathrm{S} 1]}$


Figure S2. Simulated and as-synthesized powder X-ray diffraction patterns of (a) compound 1 and (b) compound 2.


Figure S3. IR spectra of (a) compound 1 and (b) compound 2.


Figure S4. The UV-Vis absorbance spectral changes at 606 nm for the sample of $\mathbf{1}$ on alternate excitation by photoirradiation and heating at $170^{\circ} \mathrm{C}$ over nine cycles in air.


Figure S5. The optical band gap energy for (a) compound $\mathbf{1}$ and (b) compound 2.

## REFERENCES:

(S1) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390-5391.

