Supporting Information for

Deprotonated Salicylaldehyde as Visible Light Photocatalyst

Yan-Jun Zhuang[†], Jian-Ping Qu[‡], Yan-Biao Kang^{†, *}

[†] Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

[‡] Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

E-mail: ybkang@ustc.edu.cn

Contents

1.	Photo of the lamp and the reaction	S2
2	Measurement of fluorescence quantum yield (Φ)	S3
3	Fluorescence quenching experiment	S4
4	Calculation of apparent quantum efficiency (A. Q. E.)	S6
5.	NMR Data	S7

1. Photo of the lamp and the reaction

Figure S1. Photo of the lamp and the reaction.

2. Measurement of fluorescence quantum yield (Φ)

 Φ was measured by the optical dilute method with a standard of quinine sulfate ($\Phi_r = 0.55$, quinine in 0.05 M sulfuric acid) calculated by:

 $\Phi_s = \left(\frac{F_s}{F_r}\right) \times \left(\frac{1 - 10^{-A_r}}{1 - 10^{-A_s}}\right) \times \left(\frac{\eta_s}{\eta_r}\right)^2 \times \Phi_r$ Where the subscripts s and r refer to the sample and

reference standard solution respectively; F is the integrated intensity; A is the absorbance at the excitation wavelength; η is the refractive index of the solutions. Error for Φ values (± 10%) are estimated.

3. Fluorescence quenching experiment

Figure S2. Fluorescence quenching effect of catalyst by NHPI ester in DMSO. A stock solution of salicylaldehyde (0.10 M, in dry DMSO) was prepared in a volumetric flask and diluted by dry DMSO to 1.0 mM for the quenching experiment. Then K_3PO_4 was added as the base. The fluorescence measurement was monitored at least 1 h after the addition of base. A quartz cuvette (1 cm × 1 cm × 3 cm) was filled with the abovementioned 1.0 mM DMSO solution (3 mL) and its fluorescence was recorded with excitation at 458 nm in the spectrometer. Quenching experiments were performed with the injection of 1 μ L solution of NHPI ester in DMSO (0.1 M) respectively by auto-pipette.

Figure S3. Fluorescence quenching effect of catalyst by NHPI ester in DMAc. A stock solution of salicylaldehyde (0.10 M, in dry DMAc) was prepared in a volumetric flask and diluted by dry DMAc to 1.0 mM for the quenching experiment. Then K_3PO_4 was added as the base. The fluorescence measurement was monitored at least 1 h after the addition of base. A quartz cuvette (1 cm × 1 cm × 3 cm) was filled with the abovementioned 1.0 mM DMAc solution (3 mL) and its fluorescence was recorded with excitation at 458 nm in the spectrometer. Quenching experiments were performed with the injection of 1 μ L solution of NHPI ester in DMAc (0.1 M) respectively by auto-pipette.

Figure S4. Fluorescence quenching effect of catalyst by isonitrile in DMSO. A stock solution of salicylaldehyde (0.10 M, in dry DMSO) was prepared in a volumetric flask and diluted by dry DMSO to 1.0 mM for the quenching experiment. Then K_3PO_4 was added as the base. The fluorescence measurement was monitored at least 1 h after the addition of base. A quartz cuvette (1 cm × 1 cm × 3 cm) was filled with the abovementioned 1.0 mM DMSO solution (3 mL) and its fluorescence was recorded with excitation at 458 nm in the spectrometer. Quenching experiments were performed with the injection of 1 µL solution of isonitrile in DMSO (0.1 M) respectively by auto-pipette.

4. Calculation of apparent quantum efficiency (A. Q. E.)

In principle, it takes one photon to excite one deprotonated salicylaldehyde molecule to generate one alkyl radical. The energy of one photon (E_{photon}) with wavelength of λ_{inc} (nm) is calculated using the following equation:

$$E_{\rm photo} = \frac{hc}{\lambda_{inc}}$$

λ_{inc} (nm)	405	430	450	520	595	620
$E_{\rm photo}$ (J)	4.9 x 10 ⁻¹⁹	4.6 x 10 ⁻¹⁹	4.4 x 10 ⁻¹⁹	3.8 x 10 ⁻¹⁹	3.3 x 10 ⁻¹⁹	3.2 x 10 ⁻¹⁹

Where *h* (J•s) is Planck's constant, *c* (m•s⁻¹) is the speed of light and λ_{inc} (m) is the wavelength of the incident light. And the total energy of the incident monochromatic light (*E*_{total}) is calculated using the following equation:

$E_{\text{total}} = PSt$													
λ_{inc} (nm)	405	430	450	520	595	620							
E_{total} (J)	112.32	112.32	95.04	86.40	64.80	60.48							

Where P (W•cm⁻²) is the power density of the incident light, S (cm²) is the irradiation area and t (s) is the photoreaction tiom. The total number of the incident can be obtained through the following equation:

Number of incident photons = $\frac{E_{\text{total}}}{E_{\text{photo}}}$

			p.	1010		
λ_{inc} (nm)	405	430	450	520	595	620
Number of incident photons	0.38	0.41	0.36	0.38	0.33	0.31
(mmol)						

Because it is difficult determine the number of reacted electrons via experimental methods, as a result, the apparent quantum yield (A. Q. Y.) is defined as follows:

Number of meddent photos														
λ_{inc} (nm)	405	430	450	520	595	620								
A.Q.Y. (%)	44.2	41.5	47.2	0	0	0								

A. Q. Y. = $\frac{\text{Number of product}}{\text{Number of incident photos}} \times 100\%$

Figure S5. ¹H NMR spectrum of 4a (CDCl₃, 400 MHz).

Figure S7. ¹H NMR spectrum of 4b (CDCl₃, 400 MHz).

Figure S8. ¹³C NMR spectrum of 4b (CDCl₃, 100 MHz).

Figure S9. ¹H NMR spectrum of 4c (CDCl₃, 400 MHz).

Figure S11. ¹H NMR spectrum of 4d (CDCl₃, 400 MHz).

Figure S12. ¹³C NMR spectrum of 4d (CDCl₃, 100 MHz).

 	 	 	 	·····	 	 ·····	·····	·····	·····	·····	 	 ·····

ppm

Figure S14. ¹³C NMR spectrum of 4e (CDCl₃, 100 MHz).

Figure S15. ¹H NMR spectrum of 4f (CDCl₃, 400 MHz).

Figure S17. ¹H NMR spectrum of 4g (CDCl₃, 400 MHz).

Figure S18. ¹³C NMR spectrum of 4g (CDCl₃, 100 MHz).

S26

Figure S25. ¹H NMR spectrum of 4k (CDCl₃, 400 MHz).

Figure S26. ¹³C NMR spectrum of 4k (CDCl₃, 100 MHz).

Figure S27. ¹H NMR spectrum of 4l (CDCl₃, 400 MHz).

Figure S29. ¹H NMR spectrum of 6a (CDCl₃, 400 MHz).

Figure S30. ¹³C NMR spectrum of 6a (CDCl₃, 100 MHz).

Figure S36. ¹³C NMR spectrum of 6d (CDCl₃, 100 MHz).

Figure S38. ¹³C NMR spectrum of 6e (CDCl₃, 100 MHz).

Figure S39. ¹H NMR spectrum of 6f (CDCl₃, 400 MHz).

	135.305 131.990 128.868	77.476	46.700		
S 6f					
an a					No de Million de La defendancia
200 190 180 170 160 Figure S40. ¹³ C NMR spectrum of 66	150 140 130 120 110 f (CDCl ₃ , 100 MHz).) 100 90 80 70 60	50 4() 30 20 10	mqq

Figure S41. ¹H NMR spectrum of 6g (CDCl₃, 400 MHz).

Figure S43. ¹H NMR spectrum of 6i (CDCl₃, 400 MHz).

							~133.770	133.375					77.476	76.841		47.011		33.359	25.829		
CI	S 6h]																		
·····						·····				┉┉╗┉┉┈											
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

Figure S44. ¹³C NMR spectrum of 6i (CDCl₃, 100 MHz).

Figure S45. ¹H NMR spectrum of 9a (CDCl₃, 500 MHz).

Figure S46. ¹³C NMR spectrum of 9a (CDCl₃, 125 MHz).

Figure S47. ¹H NMR spectrum of 9b (CDCl₃, 400 MHz).

Figure S49. ¹H NMR spectrum of 9c (CDCl₃, 500 MHz).

Figure S50. ¹³C NMR spectrum of 9c (CDCl₃, 125 MHz).

Figure S51. ¹H NMR spectrum of 9d (CDCl₃, 400 MHz).

Figure S52. ¹³C NMR spectrum of 9d (CDCl₃, 100 MHz).

Figure S53. ¹H NMR spectrum of 9e (CDCl₃, 500 MHz).

Figure S54. ¹³C NMR spectrum of 9e (CDCl₃, 125 MHz).

Figure S55. ¹H NMR spectrum of 9f (CDCl₃, 400 MHz).

Figure S56. ¹³C NMR spectrum of 9f (CDCl₃, 100 MHz).

Figure S57. ¹H NMR spectrum of 9g (CDCl₃, 400 MHz).

Figure S58. ¹³C NMR spectrum of 9g (CDCl₃, 100 MHz).