Supporting information

Direct Observation of Crystal Engineering in Perovskite Solar Cells in a Moisture-Free Environment using Conductive Atomic Force Microscopy and Friction Force Microscopy

Kunsik An $,^{\dagger,\ddagger,\$,\perp}$ Seunghyun Rhee $^{\dagger,\$}$, Hyeonho Lee, † Kyung-Tae Kang, ‡ Changhee Lee, † and Jeonghun Kwak, $^{\dagger,\perp}$

[†] Department of Electrical Engineering and Computer Science, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Republic of Korea

[‡] Micro/Nano Process Group, Korea Institute of Industrial Technology (KITECH), Sangnokgu, Ansan 15588, Republic of Korea

To whom all correspondence should be addressed.

[⊥]J. Kwak: jkwak@snu.ac.kr

[⊥]K. An: kunsik1214@snu.ac.kr

Figure S1. Schematic representation of energy band diagram of perovskite solar cells.

Figure S2. Cross sectional scanning electron microscopy (SEM) image of the perovskite solar cells.

Figure S3. Current-voltage characteristics of 2 point measurement of perovskite film fabricate in humidity-free environment and high humidity environment with (a) 30 μ m and (b) 90 μ m distance between Au electrodes.