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Materials. Single polished n-type silicon (P doped, 1-5 Ω cm, thickness 500 μm, 

<100>) and heavy doping n-type silicon (n++-Si) (As doped, 0.001-0.0015 Ω cm) were 

purchased from Suzhou Crystal Silicon Electronic & Technology Co., Ltd. Nickel sulfate 

hexahydrate (NiSO4·6H2O, 99%), Ferrous sulfate heptahydrate (FeSO4·7H2O, 99%), 

Sodium hypophosphite (NaH2PO2, 99%), Ammonium fluoride (NH4F, 99%), Trisodium 

citrate dihydrate (Na3C6H5O7·2H2O, 99%), Stannous chloride (SnCl2, 99%), Gallium 

Indium eutectic (Ga-In, 99.99%), Palladium chloride (PdCl2, 99%) and Potassium 

hydroxide (KOH, 99%) were purchased from Aladdin Reagent, China. All reagents were 

directly used as received without further treatment. Milli-Q water was used for the 

preparation of all aqueous solutions (resistance 18 MΩ cm−1). 

Instruments. The surface morphology of electrodes were characterized by HITACHI 

SU8220 field emission scanning electron microscope (FE-SEM, 5 kV), the corresponding 

energy dispersive X-ray (EDX) were obtained by Oxford EDS Inca Energy Coater 300 (20 

kV). High-angle annular dark-field scanning transmission electron microscopy (HAADF-

STEM) images and the corresponding energy-dispersive X-ray spectroscopy (EDS) 

mappings were collected on a FEI Talos F200X (200 kV), the samples for STEM were 

obtained by focus ion beam slicing (ZEISS Crossbeam 540). The surface composition of 

the photoanodes was investigated by X-ray photoelectron spectroscopy (XPS) on an 

ESCALAB Xi+ (Thermo Scientific). The pH of electrolyte was measured by 914 

pH/conductometer (Metrohm). Ultraviolet–visible spectra were taken out of a solid UV-
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visible spectrometer evolution 200 (Thermo Scientific).

1.1 1.2 1.3 1.4 1.5 1.6
0

25

50

75

100

C
ur

re
nt

 d
en

si
ty

 (m
A

 c
m

-2
) 

Potential (V vs. RHE)

 Ni
 Ni3(Fe)P
 Ni(Fe)P
 Ni3(Fe)5P
 Ni3(Fe)7P

Figure S1. Polarization curves of NiFeP/n++-Si with different proportions of Ni:Fe in the 
deposition solution for water oxidation, measured in 1.0 M KOH solution at a scan rate of 
10 mV s−1.The electrochemical test of n++-Si electrode was measured by cycle 
voltammetry at a scan rate of 10 mV s−1 in 1.0 M KOH (pH=13.6) with 80% iR-
compensation. All the measured potentials were converted to reversible hydrogen 
electrodes (RHE) according to ERHE = EHg/HgO + 0.059 pH + 0.098. 

Figure S2. (a) Cyclic Voltammetry curves of NiFeP/n++ Si electrodes corresponding to 
different deposition times, measured in 1.0 M KOH solution at a scan rate of 10 mV s−1. 
(b) Linear sweep voltammetry curves of NiFeP/n-Si photoanodes with different deposition 
times under irradiation, measured in 1.0 M KOH solution at a scan rate of 50 mV s−1.
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Figure S3. SEM images of the bare silicon with micro-pyramid structure at different 
magnification.

Figure S4. SEM images of the micro-pyramid structured n-Si treated with Sn2+ and Pd2+ 
(Pd0/n-Si) at different magnification.
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Figure S5. EDS mapping of Pd0/n-Si, and the corresponding EDS spectra.

Figure S6. SEM images of NiFeP/n-Si electrode at different magnification prepared by 
electroless deposition for 10 s.
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Figure S7. SEM images of NiFeP/n-Si electrode at different magnification prepared by 
electroless deposition for 20 s.

Figure S8. SEM images of NiFeP/n-Si electrode at different magnification prepared by 
electroless deposition for 40 s.
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Figure S9. SEM images of NiFeP/n-Si electrode at different magnification prepared by 
electroless deposition for 60 s.

Figure S10. EDS mapping of NiFeP/n-Si electrode prepared by electroless deposition for 
40 s, and the corresponding EDS spectra.
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Figure S11. HAADF-STEM image and the corresponding EDS mappings of as prepared 
NiFeP/n-Si photoanode.
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Figure S12. X-ray diffraction pattern of n-Si, as prepared NiFeP/n-Si and NiFeP/n-Si 
after 17h steady-state OER test.
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Figure S13 (a) The I-t curve corresponding to the Faradaic Efficiency measurement. (b) 
H2 (green lines) and O2 (blue lines) actual production (circles and squares) and theorical 
production (dot lines) vs time (h), the red squares are Faradic Efficiency corresponding to 
the time, and the red line is the average Faradic Efficiency.
 

To measure the amount of oxygen produced by the photoelectrochemical process, 

chronopotentiometry measurements were recorded in a sealed quartz cell (1.0 M KOH as 

electrolyte, NiFeP/n-Si as work electrode) at an applied potential of 1.23 V vs. RHE 

without iR compensation, the active area of the NiFeP/n-Si photoanode is controlled to 

be 0.1cm-2. Before chronopotentiometry measurement, the assembled quartz cell was 

degassed by argon for 40 min. 0.5 mL of gas was analyzed by gas chromatography (GC, 

Techcomp GC 7890T, Ar as the carrier gas, Thermo Conductivity Detector). 
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Figure S14. (a) Irradiance spectra of the ASTM G173-03 (AM1.5G) and the solar 
simulator with AM 1.5G filter. (b) The calculated photocurrents of NiFeP/n-Si by 
integrating IPCE at 1.23V and 1.5V vs. RHE over the photon flux of solar illuminator. (c) 
The calculated photocurrents of NiFeP/n-Si by integrating IPCE at 1.23V and 1.5V vs. 
RHE over the photon flux of ASTM G173-03.
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Table S1. PEC performance of recently published silicon photoanodes with Ni based 
catalyst. 

Photoanode

Structure

Fabrication 

Methods
Electrolyte

Current 

density 

@1.23V 

vs. RHE 

(mA cm−2)

Saturation 

Current 

density

(mA cm−2)

Stability

(h)
Ref.

NiFeP/n-Si ELD 1.0 M KOH 15.5 40.5 17
This 
work

NiFeP/n-Si ELD 1.0 M KBi 2.3 38 75
This 
work

Ni/SiO2/n-Si
ELD+ 

photolithography
1.0 M KOH 7 27.5 24 1

NiFe NP/black n-Si ED 1.0 M KOH 4.3 23.8 16 2
Ni/n-Si ED 1.0 M KOH 3.5 32.5 10 3

NiFe/np+Si ED 1.0 M KOH 30 30 12 4
NiSe2/n-Si CVD+calcination 1.0 M KOH 5 8 2 5
Ni-Au/n-Si TE+ED 1.0 M KBi 0 30 null 6

NiFe NPs/n-Si TE 1.0 M KOH 25.2 30 22.5 7
NiOx/Graphdiyne 

Nanowall/ITO/

n+np+-Si

MS+chemical 

liquid deposition
1.0 M KOH <5 39.1 null 8

NiOOH/ITO/TiO2/n-

Si
ALD+ MS+ED 1.0 M LiOH 18 40 null 9

Co(OH)2/TiO2/b-Si ALD+ED 1.0 M KOH 2 32 4 10

NiMoO4/TiO2/n-Si
ALD+

Hydrothermal

0.25 M 

KOH
0 20 0.2 11

NiOOH/NiO/Ni/

Al2O3/SiO2/Si
ALD+ MS 1.0 M KOH 28 30 80 12

CoOx/n-Si ALD 1.0 M KOH 20 30 2500 13
CoOx/TiO2/n-Si ALD 1.0 M KOH 3.5 32.5 12 14

NiCuOx/CoOx/n-Si ALD+spin-coating 1.0 M KOH 15 28.3 22.6 15
NiAu NPs/TiO2/n-Si ALD+e-beam 1.0 M KOH 18.8 35 20 16

Ni/TiO2/np+Si ALD+e-beam 1.0 M KOH 10 35 100 17
Ni Ni-Mo/n+np+-Si e-beam 1.0 M KOH 32 37 100 18

Ni/n-Si e-beam 1.0 M KOH 10 (2 sun) 57 (2 sun) 80 19
ELD = Electroless deposition, Electrodeposition = ED, Thermal evaporation = TE, Magnetron 
sputtering = MS, Atomic layer deposition = ALD, Chemical vapor deposition = CVD, Electron Beam 
Evaporation = e-beam
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Figure S15. Reflectance spectra of NiFeP/n-Si, micro-pyramid silicon (n-Si) and flat 
silicon measured by UV visible diffuse reflectance spectrometer.
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Figure S16. IMPS curves of NiFeP/n-Si electrodes measured in 1.0 M KOH at bias 
potential of 0.33 V vs. Hg/HgO (1.23 V vs.RHE).
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Figure S17. IMPS of n-Si electrodes measured in 1.0 M KOH at bias potential of 0.33 V 
vs. Hg/HgO (1.23 V vs.RHE).
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Figure S18.Charge transfer efficiency of NiFeP/n-Si at 1.23V vs. RHE calculated by IMPS 
spectra.
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Figure S19. SEM images of NiFeP/n-Si electrode 17 h continuous PEC measurement in 
1.0 M KOH solution at 1.23 V vs RHE.

Figure S20. HAADF-STEM images and corresponding EDS mappings of NiFeP/n-Si 
photoanodes after steady-state OER test.
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Figure S21. (a) XPS data of NiFeP/n-Si after 17h OER tested; High-resolution XPS 
spectra of (b) Ni 2p (c) Fe 2p (d) P 2p (e) O1s and (f) Si 2p for NiFeP/n-Si after 17h 
steady-state OER test. The scatter line is the raw data and the red line is the fitting result.
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Figure S22. I–t curve of NiFeP(60s)/n++-Si photoanode under light irradiation at a 
constant bias of 1.55 V vs. RHE with 1.0 M KOH as the electrolyte without iR 
compensation.
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Figure S23. J–V curves of NiFeP/n-Si photoanode under AM 1.5G simulated sunlight at 
100 mW cm−2 and the electrocatalytic activity of NiFeP/n++-Si electrode measured in 1.0 
M KOH with 1.0 M H3BO3 (1M K-borate, pH=9.2) with a scan rate of 50 mV s−1 and 10 mV 
s−1.
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Figure S24. SEM images of NiFeP(40s)/n-Si electrode after 75 h continuous PEC 
measurement in 1.0 M KBi solution.

Figure S25. SEM images of NiFeP(20s)/n-Si electrode after 90 min continuous PEC 
measurement in 1.0 M KOH solution.

Supplementary note:
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The proposed reaction mechanisms of NiFeP electroless deposition on n-Si, the 

activation process can be described by the reactions given below:

Sn2++Pd2+ Sn4++Pd0

At first, the Sn2+ is absorbed to the surface of silicon in the activation solution A, and 

then, the  produced on the surface of n-Si in the solution B by the reaction given 𝑃𝑑0

above which results as the catalyst of the beginning of the deposition process. At the 

beginning of the electroless deposition, the deposition reaction is catalyzed by the Pd0, as 

the NiFeP alloy depositing, the deposition reaction can be catalyzed by the Ni0 and Fe0 

and the reaction rate increased with the amount of NiFeP alloy increasing.20-23 

H2PO2
- + H2O H2PO3

2- + 2H+ + 2e-

H2PO2
- + 2H+ + e- P + 2H2O

Ni2+(Fe2+) + e- Niads
1 (Feads

1)

Niads
1(Feads

1) + e- Ni (Fe)

2H+ +2e- H2
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