Predicting Partition Coefficients Of Neutral And Charged

Solutes In The Mixed SLES-fatty Acids In Micellar

System
 Alexander D. MacKerell Jr ${ }^{\text {\& , * }}$
${ }^{\dagger}$ Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK,
${ }^{*}$ Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, UK
${ }^{\text {\& }}$ University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.

Calculation of micelle/water partition coefficients, $\mathrm{K}_{\text {mic, } \mathrm{A}}$

$\log K_{\text {mic,A }}(\mathrm{mole} / \mathrm{mol})$ for caprate ion was derived using data relative to the concentration of the monomer in water and in the micelle phase from Table A. 1 of Tzocheva et al using equation 26 of the same paper:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{mic} / \mathrm{w}}=\frac{\gamma_{z} y_{z}}{c_{z}} \tag{Eq. 1}
\end{equation*}
$$

In which γ_{z} and y_{z} are the activity coefficient and the molar fraction of caprate in the micellar phase and c_{z} is the concentration of caprate in the water phase. Free energy value was then calculated as: $\Delta \mathrm{G}_{\text {transf }}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{mic} / \mathrm{w}}$.

Convergence analysis for caprate PMF with the polarizable and the nonpolarizable force fields

Figure S1 shows the convergence of the PMF for caprate at four different time portions of the windows (i.e. $0-2.5 \mathrm{~ns}, 0-5 \mathrm{~ns}, 0-7.5 \mathrm{~ns}$ and $0-10 \mathrm{~ns}$) when the non-polarizable force field (a) and the polarizable force field (b) are employed. As can be seen, in both cases the free energy surfaces in the portions $0-5 \mathrm{~ns}, 0-7.5 \mathrm{~ns}$ and $0-10 \mathrm{~ns}$ are very similar indicating that the free energy surfaces in the last 5 ns of the PMF profiles have converged.

Figure S1: Convergence of PMF for caprate at different time portions of the 36 windows for the a) nonpolarizable force field and \mathbf{b}) polarizable force field.

Parametrization of SLES, capric acid and caprate ion with the CHARMM

Drude FF

Initial residue topologies and parameters for SLES, capric acid and caprate were assigned based on analogy with those already available in the Drude force field. In the case of SLES, a new atomtype was introduced for the sulfur atom in sulfate wherein the Lennard-Jones parameters were taken from Drude force field parameter of phosphorus atom of phosphate ${ }^{2}$. Since the missing parameters were mainly associated with the head-group of SLES, a prototype structure was prepared by attaching the head-group of SLES to a neutral methyl moiety. This procedure allows patching of the head-group parameters with the rest of the aliphatic chain of the concerned molecule. The head-group parameters were refined to improve the agreement with QM waterinteractions, molecular polarizability and the intramolecular stretching, bending and twisting patterns along with the dihedral potential energy scan. The QM target data were generated by using
the Gaussian03 software ${ }^{3}$. The structure of methylsulfate was initially optimized at MP2/6-31G*4 level of theory. The optimized structure was then subjected to single point calculation at MP2/cc$\mathrm{pVQZ}{ }^{5}$ level of theory to obtain the molecular polarizability. Target data for partial charges were based on water-methylsulfate dimer interaction (Figure S2) optimized at the MP2/aug-cc-pVDZ ${ }^{6}$ model chemistry. The interaction energies between water and methylsulfate were calculated by subtracting their monomer energies obtained from single-point calculation at MP2/aug-cc-pVDZ level of theory from the total energy of water-methylsulfate complexes. A scan of the potential energy surface (PES) along the C-O-S-O dihedral was performed at MP2/aug-cc-pVDZ model chemistry.

The Drude-force field parameters of the head-group were parametrized using CHARMM-c42b1 ${ }^{7}$ targeting the above QM data. The bond and angle parameters were adjusted such that molecular mechanics (MM) optimized geometry matches the QM geometry. Values for QM and MM bonds, angles and dihedrals and their differences for the optimized geometries are reported in Table S1. The dihedral parameter of the C-O-S-O dihedral was modified to reproduce the QM PES. The plot of MM and QM PES against the C-O-S-O dihedral is given in Figure S3. The alpha and Thole parameters were adjusted to match QM molecular polarizability values and are reported in Table S2. The MM interaction energies of methylsulfate with water are reported in Table S3 in comparison to the corresponding QM values. The MM values are systematically less favourable than the QM values. However, this difference was not corrected based on a calculation of the free energy of aqueous solvation of methylsulfate, yielding a value of $-84.05 \mathrm{kcal} / \mathrm{mol}$, which is in good agreement with $-80.12 \mathrm{kcal} / \mathrm{mol}$ as predicted by COSMOtherm program. Details of the free energy of aqueous solvation calculation are shown along with final residue topologies and parameters for not currently available in the Drude force fields are presented in Tables S4, S5 and S6.

Figure S2: a) Molecular structure of minimized methylsulfate, b) comparison of 3D coordinates obtained from QM and MM after parametrization, and c) four different orientations of water interacting with methylsulfate used for fitting the MM charges combined in a single image.

Table S1: Internal coordinates of methylsulfate $\left(\mathrm{C}(\mathrm{H} 1)(\mathrm{H} 2)(\mathrm{H} 3)-\mathrm{O} 1-\mathrm{S}(\mathrm{O} 2)(\mathrm{O} 3)(\mathrm{O} 4)^{-}\right)$obtained from optimized QM (MP2/6-31G*) and the Drude polarizable MM calculations.

\#IC_LIST	QM_V	MM_V	$\mathbf{\Delta V}(\mathbf{M M} \mathbf{- Q M})$
C-O1	1.408	1.474	0.067
C-H1	1.107	1.111	0.004
C-H2	1.107	1.113	0.006
C-H3	1.107	1.113	0.006
S-O1	1.751	1.774	0.023
S-O2	1.493	1.499	0.006
S-O3	1.485	1.493	0.007
S-O4	1.485	1.493	0.007
H1-C-O1	106.498	109.631	3.132
H1-C-H2	108.620	108.396	-0.224
H1-C-H3	108.620	108.396	-0.224
O1-C-H2	112.990	110.591	-2.399
O1-C-H3	112.990	110.591	-2.399
H2-C-H3	106.995	109.178	2.183
C-O1-S	114.386	114.935	0.549
O1-S-O2	103.445	107.775	4.329
O1-S-O3	102.122	99.099	-3.023
O1-S-O4	102.122	99.099	-3.023
O2-S-O3	115.357	115.718	0.361
O2-S-O4	115.357	115.718	0.361
O3-S-O4	115.503	115.920	0.417
H1-C-O1-S	180.000	-180.000	0.000
H2-C-O1-S	-60.831	-60.533	-0.299
H3-C-O1-S	60.831	60.533	-0.298
C-O1-S-O2	0.003	0.000	-0.003
C-O1-S-O3	120.117	120.854	0.737
C-O1-S-O4	-120.111	-120.854	0.743

QM_V and MM_V are distances, angles and dihedral values obtained from QM and MM calculations, respectively. $\Delta \mathrm{V}(\mathrm{MM}-\mathrm{QM})$ is the difference between MM and QM values. Distance values are in \AA, and angles and dihedral values are in degrees.

Table S2: Values of components of molecular polarizability (Pxx, Pyy and Pzz) and total molecular polarizability ($\mathrm{P}_{\text {tot }}$) of methylsulfate obtained from QM (MP2/cc-pVQZ) and Drude polarizable MM calculations.

Polarizability	QM_Pol	MM_Pol	(Pol(MM-QM)
\mathbf{P}_{xx}	5.931	5.671	-0.260
\mathbf{P}_{yy}	4.552	5.672	1.120
\mathbf{P}_{zz}	4.615	5.703	1.088
$\mathbf{P}_{\text {tot }}$	5.033	5.682	0.649

QM_Pol and MM_Pol are polarizability values (xx, yy and zz components) obtained from QM and MM calculations, respectively. $\triangle \mathrm{Pol}(\mathrm{MM}-\mathrm{QM})$ is the difference between MM and QM values. Polarizability values are represented in \AA^{3}.

Table S3: Interaction energies and corresponding distances between water and methylsulfate obtained from QM (MP2/aug-cc-pvDZ) and the Drude polarizable MM calculations. Various entries correspond to different orientation of water molecules placed to represent maximum interaction with different oxygen atoms in methylsulfate.

Complex	QM_IE	MM_IE	SIE(MM-QM)	QM_D	MM_D	DD(MM-QM)
SULF_O2_WAT	-10.980	-4.539	6.441	1.96	2.14	0.18
SULF_O3_WAT	-12.568	-10.108	2.460	1.83	1.98	0.15
SULF_O4_WAT	-12.805	-9.959	2.846	1.83	1.98	0.15
SULF_O5_WAT	-12.465	-10.051	2.414	1.83	1.98	0.15
Q4						

QM_IE and MM_IE are interaction energies obtained from QM and MM calculations, respectively; QM_D and
MM_D are distances between concerned oxygen atom with closest hydrogen atom of the water molecule in water in QM and MM calculations, respectively. Energy values are in kcal/mol. Distance values are in \AA.

Figure S3: Relaxed potential energy scan of C-O1-S-O2 dihedral of methylsulfate obtained from QM (MP2/aug-cc-pvDZ) and the Drude polarizable MM calculations.

Free energy of hydration

Free energy of hydration was calculated via free energy perturbation method using the staged protocol developed by Deng and Roux. ${ }^{2}$ In this procedure, free energy is divided into nonpolar (LJ potential) and electrostatic contributions. The nonpolar contribution is further divided into repulsive and dispersive (attractive) part using Weeks, Chandler and Andersen (WCA) scheme. Following equations show the calculation of free energy of hydration and the obtained energies for methylsulfate. We note that there is no experimental estimate of the free energy of hydration of methylsulfate available such that the results are included only for informational purposes.
$\Delta G^{\text {hyd }}=\Delta G^{a q}-\Delta G^{v a c}+z F \Phi+\operatorname{corr}+\operatorname{lrc}=-84.05 \mathrm{kcal} / \mathrm{mol}$

Eq. 2
Eq. 2a
Eq. 2 b
Eq. 2c
Eq. 2d
Eq. 2e

In Eq. $1, \Delta G^{h y d}, \Delta G^{a q}, \Delta G^{v a c}, z, F, \Phi, c o r r, \operatorname{lrc}$ are free energy of hydration of methylsulfate, free energy of methylsulfate in water, free energy of methylsulfate in gas, total charge, Faraday constant, electrostatic Galvani potential at the liquid vacuum interface, entropy related contributions and long range correction computed using particle mesh Ewald summation, respectively. The terms $\Delta G_{n o n p}^{a q}$ and $\Delta G_{e l e c}^{a q}$, are nonpolar (LJ potential) and electrostatic contributions to aqueous free energy. LJ potential is further divided into $\Delta G_{r e p}^{a q}$ and $\Delta G_{\text {dis }}^{a q}$ terms representing repulsive and dispersive terms. Similar notation are used for free energy in vacuum as $\Delta G_{n o n p}^{v a c}, \Delta G_{r e p}^{v a c}, \Delta G_{d i s}^{v a c}$ and $\Delta G_{\text {elec }}^{v a c}$.

Table S4. Drude toppar stream file with topology and parameters for SLES molecule.

```
* DRUDE topology and parameter stream file for ! sulfate
*
!requires toppar_drude_master*.str
read rtf card append
* Topology for Drude nucleic acids
38
DEFA FIRS NONE LAST NONE
AUTOGENERATE ANGLES DIHEDRALS DRUDE
\begin{tabular}{|c|c|c|c|c|c|}
\hline RESI & LES & \multicolumn{2}{|l|}{-1.000} & & \\
\hline GROUP & & & CHARGE & CH_PENALTY & \\
\hline ATOM & C16 & CD32C & -0.371 & ALPHA -1.678 & THOLE 0.862 \\
\hline ATOM & 02 & OD30B & -0.279 & ALPHA -0.670 & THOLE 0.181 \\
\hline ATOM & S & SD1A & 1.930 & ALPHA -0.930 & THOLE 1.098 \\
\hline ATOM & 03 & OD2C2B & -0.850 & ALPHA -0.990 & THOLE 1.083 \\
\hline ATOM & 04 & OD2C2B & -0.850 & ALPHA -0.990 & THOLE 1.083 \\
\hline ATOM & 05 & OD2C2B & -0.850 & ALPHA -0.990 & THOLE 1.083 \\
\hline ATOM & H32 & HDA2A & 0.135 & & \\
\hline ATOM & H33 & HDA2A & 0.135 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline ATOM & C13 & CD32A & -0.120 & ALPHA -1.887 & THOLE 0.456 \\
\hline ATOM & H26 & HDA2A & 0.060 & & \\
\hline ATOM & H27 & HDA2A & 0.060 & & \\
\hline ATOM & C14 & CD32A & -0.004 & ALPHA -1.696 & THOLE 0.918 \\
\hline ATOM & H28 & HDA2A & 0.060 & & \\
\hline ATOM & H29 & HDA2A & 0.060 & & \\
\hline ATOM & 01 & OD30A & 0.000 & ALPHA -0.705 & THOLE 1.312 \\
\hline ATOM & LP1A & LPD & -0.116 & & \\
\hline ATOM & LP1B & LPD & -0.116 & & \\
\hline ATOM & C15 & CD32A & -0.004 & ALPHA -1.798 & THOLE 1.074 \\
\hline ATOM & H30 & HDA2A & 0.060 & & \\
\hline ATOM & H31 & HDA2A & 0.060 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline ATOM & C1 & CD33A & -0.177 & ALPHA -2.051 & ThOLE 1.3 \\
\hline ATOM & H1 & HDA3A & 0.059 & & \\
\hline ATOM & H2 & HDA3A & 0.059 & & \\
\hline ATOM & H3 & HDA3A & 0.059 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline ATOM & C2 & CD32A & -0.156 & ALPHA -1.660 & THOLE 1.3 \\
\hline ATOM & H4 & HDA2A & 0.078 & & \\
\hline ATOM & H5 & HDA2A & 0.078 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline ATOM & C3 & CD32A & -0.156 & ALPHA -1.660 & THOLE 1.3 \\
\hline ATOM & H6 & HDA2A & 0.078 & & \\
\hline ATOM & H7 & HDA2A & 0.078 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline ATOM & C4 & CD32A & -0.156 & ALPHA -1.660 & THOLE 1.3 \\
\hline ATOM & H8 & HDA2A & 0.078 & & \\
\hline ATOM & H9 & HDA2A & 0.078 & & \\
\hline \multicolumn{2}{|l|}{GROUP} & & & & \\
\hline
\end{tabular}
```


OD30B	CD32C	CD32A	OD30A	0.0340	5	0.00
OD30B	CD32C	CD32A	OD30A	0.0225	6	0.00
OD30B	CD32C	CD32A	HD2A	0.190	3	0.00
HDA2A	CD32C	CD32A	OD30A	0.190	3	0.00
CD32C	CD32A	OD30A	CD32A	0.570	1	0.00
CD32C	CD32A	OD30A	CD32A	0.290	2	0.00
CD32C	CD32A	OD30A	CD32A	0.430	3	0.00
CD32A	CD32C	OD30B	SD1A	0.203	1	180.00
CD32A	CD32C	OD30B	SD1AA	0.182	2	0.00
CD32A	CD32C	OD30B	SDDA	0.123	3	180.00
CD32A	CD32C	OD30B	SD1AA	0.089	4	0.00
CD32A	CD32C	OD30B	SD1A	0.143	5	180.00
CD32A	CD32C	OD30B	SD1A	0.093	6	180.00

IMPROPERS
NONBONDED nbxmod 5 atom vatom cdiel vdistance switch vswitch cutnb 16.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5
SD1A
$0.0-0.2700$
1.9000 ! DMP, 1ipids

END
RETURN
Table S5. Drude toppar stream file with topology and parameters for CA molecule.

```
* DRUDE topology and parameter stream file
*
!requires toppar_drude_master*.str
!ioformat extended
read rtf card append
* Topology for Drude lipids
*
38
dEFA FIRS NONE LAST NONE
AUTOGENERATE ANGLES DIHEDRALS DRUDE !note use of DRUD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline RESI CAC & & 0.000 & param & penalt & ty \(=0\) & 0.600 & charge penalty= & 1.952 \\
\hline GROUP & ! & Charge & CH_P & Enalty & & & & \\
\hline ATOM C8 & CD32C & -0.208 & ALPHA & -2.114 & Thole & 0.750 & ! -0.208 & \\
\hline ATOM H15 & HDA2A & 0.092 & & & & & & \\
\hline ATOM H16 & HDA2A & 0.092 & & & & & & \\
\hline ATOM C10 & CD203A & 0.858 & ALPHA & -1.207 & THOLE & 0.708 & & \\
\hline ATOM 01 & OD2C3A & 0.000 & ALPHA & -0.922 & THOLE & 1.539 & & \\
\hline ATOM LPP1 & LPD & -0.319 & & & & & & \\
\hline ATOM LPP2 & LPD & -0.319 & & & & & & \\
\hline ATOM 02 & OD30D & 0.000 & ALPHA & -1.280 & Thole & 1.124 & & \\
\hline ATOM LPP3 & LPD & -0.285 & & & & & & \\
\hline ATOM LPP4 & LPD & -0.285 & & & & & & \\
\hline ATOM H2O & HDP1A & 0.374 & & & & & & \\
\hline GROUP & & & & & & & & \\
\hline ATOM C9 & CD33A & -0.177 & ALPHA & -2.051 & THOLE & E 1.3 & & \\
\hline ATOM H17 & HDA3A & 0.059 & & & & & & \\
\hline ATOM H18 & HDA3A & 0.059 & & & & & & \\
\hline ATOM H19 & HDA3A & 0.059 & & & & & & \\
\hline GROUP
ATOM C2 & & & & & & & & \\
\hline ATOM C2 & CD32A & -0.156 & ALPHA & -1.660 & THOLE & E 1.3 & & \\
\hline ATOM H3 & HDA2A & 0.078 & & & & & & \\
\hline ATOM H4 & HDA2A & 0.078 & & & & & & \\
\hline GROUP & & & & & & & & \\
\hline ATOM C3 & CD32A & -0.156 & ALPHA & -1.660 & THOLE & E 1.3 & & \\
\hline ATOM H5 & HDA2A & 0.078 & & & & & & \\
\hline ATOM H6 & HDA2A & 0.078 & & & & & & \\
\hline GROUP & & & & & & & & \\
\hline ATOM C4 & CD32A & -0.156 & ALPHA & -1.660 & THOLE & E 1.3 & & \\
\hline ATOM H7 & HDA2A & 0.078 & & & & & & \\
\hline ATOM H8 & HDA2A & 0.078 & & & & & & \\
\hline GROUP & & & & & & & & \\
\hline ATOM C5 & CD32A & -0.156 & ALPHA & -1.660 & THOLE & E 1.3 & & \\
\hline ATOM H9 & HDA2A & 0.078 & & & & & & \\
\hline ATOM H10 & HDA2A & 0.078 & & & & & & \\
\hline GROUP & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { ATOM C6 } \\
& \text { ATOM H11 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CD32A } \\
& \text { HDA2A }
\end{aligned}
\] & \[
\begin{array}{r}
-0.156 \\
0.078
\end{array}
\] & ALPHA & -1.660 & THOLE & E 1.3 & & \\
\hline
\end{tabular}
```


Table S6. Drude toppar stream file with topology and parameters for Caprate ion molecule.

!requires toppar_drude_master*.str					
!ioformat extended					
read rtf card append * Topology for Drude lipids *					
38					
DEFA FIRS NONE LAST NONE					
AUTOGENERATE ANGLES DIHEDRALS DRUDE !note use of DRUD					
RESI CAPGROUP					
GROUP					
ATOM C8	CD32C	-0.190	ALPHA -2.528	THOLE	1.414
ATOM H15	HDA2A	0.004			
ATOM H16	HDA2A	0.004			
ATOM C10	CD202A	0.708	ALPHA -1.016	THOLE	0.899
ATOM 01	OD2C2A	0.003	ALPHA -0.699	THOLE	2.399
ATOM LP1A	LPD	-0.383			
ATOM LP1B	LPD	-0.383			
ATOM 02	OD2C2A	0.003	ALPHA -0.699	THOLE	2.399
ATOM LP2A	LPD	-0.383			
ATOM LP2B	LPD	-0.383			
GROUP					
ATOM C9	CD33A	-0.177	ALPHA -2.051	THOLE	1.300
ATOM H17	HDA3A	0.059			
ATOM H18	HDA3A	0.059			
ATOM H19	HDA3A	0.059			
GROUP					
ATOM C2	CD32A	-0.156	ALPHA -1.660	THOLE	1.300
ATOM H4	HDA2A	0.078			
ATOM H3	HDA2A	0.078			
GROUP					
ATOM C3	CD32A	-0.156	ALPHA -1.660	THOLE	1.300
ATOM H6	HDA2A	0.078			
ATOM H5	HDA2A	0.078			
GROUP					
ATOM C4	CD32A	-0.156	ALPHA -1.660	THOLE	1.300
ATOM H8	HDA2A	0.078			
ATOM H7	HDA2A	0.078			
GROUP					
ATOM C5	CD32A	-0.156	ALPHA -1.660	THOLE	1.300
ATOM H10	HDA2A	0.078			
ATOM H9	HDA2A	0.078			
GROUP					

References

(1) Tzocheva, S. S.; Kralchevsky, P. A.; Danov, K. D.; Georgieva, G. S.; Post, A. J.;

Ananthapadmanabhan, K. P. Solubility Limits and Phase Diagrams for Fatty Acids in Anionic (SLES) and Zwitterionic (CAPB) Micellar Surfactant Solutions. J. Colloid Interface Sci. 2012, 369 (1), 274-286. https://doi.org/https://doi.org/10.1016/j.jcis.2011.12.036.
(2) Li, H.; Chowdhary, J.; Huang, L.; He, X.; MacKerell, A. D.; Roux, B. Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. J. Chem. Theory Comput. 2017, 13 (9), 4535-4552. https://doi.org/10.1021/acs.jctc.7b00262.
(3) Frisch, Ae.; Frisch, M. J. Gaussian 03 Pocket Reference; Gaussian, Incorporated, 2003.
(4) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse FunctionAugmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements,

Li-F. J. Comput. Chem. 1983, 4 (3), 294-301. https://doi.org/10.1002/jcc.540040303.
(5) Woon, D. E.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98 (2), 1358-1371. https://doi.org/10.1063/1.464303.
(6) Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007-1023. https://doi.org/10.1063/1.456153.
(7) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4 (2), 187-217. https://doi.org/10.1002/jcc.540040211.

