Na⁺/K⁺-ATPase-Targeted Cytotoxicity of (+)-Digoxin and Several

Semi-synthetic Derivatives

Yulin Ren,[†] Hennrique T. Ribas, ^{†,#} Kimberly Heath,[‡] Sijin Wu,[†] Jinhong Ren,[§], Pratik Shriwas, [⊥], ^{||},[⊽] Xiaozhuo Chen,^{⊥,||},[⊽], ^O Michael E. Johnson,^{‡,§} Xiaolin Cheng,[†] Joanna E. Burdette,[‡] and A. Douglas Kinghorn^{†,*}

[†]Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States

[‡]Department of Pharmaceutical Sciences and [§]Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
[⊥]Department of Biological Sciences, ^{||} Edison Biotechnology Institute, [¬]Molecular and Cellular Biology Program, and ^oDepartment of Biomedical Sciences, Ohio University, Athens, OH 45701, United States

Content of Supplementary Data

Figure S1. Mass and ¹H and ¹³C NMR spectra of (+)-digoxin (1).

Figure S2. Mass and ¹H and ¹³C NMR spectra of (+)-12,4'c-di-O-acetyldigoxin (2).

Figure S3. Mass and ¹H and ¹³C NMR spectra of (+)-12,3'c,4'c-tri-*O*-acetyldigoxin (3).

Figure S4. Mass and ¹H and ¹³C NMR spectra of (+)-12,3'a,3'b,3'c,4'c-penta-O-acetyldigoxin (4).

Figure S5. Mass and ¹H and ¹³C NMR spectra of (+)-digoxigenin (5).

Figure S6. Mass and ¹H, ¹³C, COSY, HSQC, HMBC, and NOESY NMR spectra of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S7. Mass and ¹H, ¹³C, COSY, HSQC, HMBC, and NOESY NMR spectra of (+)-17-epi-

20,22-dihydro-21α-hydroxydigoxin (7).

Figure S8. Structures of digoxin and its synthetic derivatives 1–7.

Figure S9. COSY and key HMBC correlations of the isolates 1–7.

Figure S10. Selected NOESY correlations of 1–7.

Figure S11. Structures and binding poses of **1** and 20,22-dihydro-21β-hydroxydigoxin (**7a**) and Na⁺/K⁺-ATPase.

Table S1. ¹H NMR Spectroscopic Data of 2–6.

Table S2. ¹³C NMR Spectroscopic Data of 2–6.

Analytical data of (+)-digoxin (1)

Figure S1a. Mass spectrum of (+)-digoxin (1).

Figure S1b. ¹H NMR spectrum of (+)-digoxin (1).

Figure S1c. ¹³C NMR spectrum of (+)-digoxin (1).

Figure S2a. Mass spectrum of (+)-12,4'c-di-O-acetyldigoxin (2).

Figure S2b. ¹H NMR spectrum of (+)-12,4'c-di-O-acetyldigoxin (2).

Figure S2c. ¹³C NMR spectrum of (+)-12,4'c-di-*O*-acetyldigoxin (2).

Figure S3a. Mass spectrum of (+)-12,3'c,4'c-tri-O-acetyldigoxin (3).

Figure S3b. ¹H NMR spectrum of (+)-12,3'c,4'c-tri-*O*-acetyldigoxin (3).

Figure S3c. ¹³C NMR spectrum of (+)-12,3'c,4'c-tri-*O*-acetyldigoxin (3).

Figure S4a. Mass spectrum of (+)-12,3'a,3'b,3'c,4'c-penta-O-acetyldigoxin (4).

Figure S4b. ¹H NMR spectrum of (+)-12,3'a,3'b,3'c,4'c-penta-O-acetyldigoxin (4).

Figure S4c. ¹³C NMR spectrum of (+)-12,3'a,3'b,3'c,4'c-penta-O-acetyldigoxin (4).

Figure S5a. Mass spectrum of (+)-digoxigenin (5).

Figure S5b. ¹H NMR spectrum of (+)-digoxigenin (5).

Figure S5c. ¹³C NMR spectrum of (+)-digoxigenin (5).

Figure S6a. Mass spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6b. ¹H NMR spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6c. ¹³C NMR spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6d. COSY NMR spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6e. HSQC spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6f. HMBC NMR spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S6g. NOESY NMR spectrum of (+)-8(9)-β-anhydrodigoxigenin (6).

Figure S7a. Mass spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7b. ¹H NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7c. ¹³C NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7d. COSY NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7e. HSQC NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7f. HMBC NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S7g. NOESY NMR spectrum of (+)-17-*epi*-20,22-dihydro-21α-hydroxydigoxin (7).

Figure S8. Structures of digoxin (1) and its synthetic derivatives 1–7.

Figure S9. COSY and key HMBC correlations of the isolates 1–7.

Figure S10. Selected NOESY correlations of 1–7.

Figure S11. Structures of 1 and 20,22-dihydro-21 β -hydroxydigoxin (7a) (A). Docking profiles for 1 (cyan) (B) and 7a (gray) (C) and Na⁺/K⁺-ATPase. The overlaid docking profile of (+)-digoxin (1, cyan) in the Na⁺/K⁺-ATPase crystal complex and the docking result for 7a (gray) shown by using Chimera1.10.2 (residues within 5 Å around OH-21 of 7a are colored in yellow) (D).

position	2	3	4	5	6
1	α 1.29 m	α 1.31 m	α 1.33 m	α 1.34 m	α1.41 m
	β 1.34 m	β 1.31 m	β 1.33 m	β 1.46 m	β 1.52 m
2	α 1.51 m	α 1.50 m	α 1.53 m	α 1.59 m	α 1.52 m
	β1.51 m	β 1.50 m	β 1.50 m	β1.31 m	β 1.33 m
3	α 3.91 br s	α 3.89 br s	α 3.91 br s	α 3.88 m	α 3.63 m
4	α 1.77 m	α 1.74 m	α 1.75 m	α 1.81 m	α 1.52 m
	β 1.32 m	β 1.33 m	β 1.30 m	β 1.19 m	β 1.52 m
5	β 1.55 m	β 1.52 m	в 1.55 m	, β 1.71 m	β 1.52 m
6	α 1.17 m	α 1.17 m	α 1.17 m	α 1.15 m	α 1.45 m
	β 1.74 m	β 1.76 m	β 1.73 m	β 1.78 m	β 1.58 m
7	α 1.06 m	α 1.10 m	α 1.11 m	α 1.11 m	α 1.38 m
	ß 1.73 m	ß 1.67 m	в 1.71 m	в 1.75 m	ß 1.61 m
8	β 1.49 m	β 1.49 m	β 1.48 m	ß 1.43 m	P ···
9	α 1.64 m	a 1.61 m	α 1.64 m	α 1.60 m	
11	α 1 52 m	α 1 51 m	a 1 53 m	a 1 49 m	α 2 02 m
••	β115 m	ß 1 16 m	ß 1 15 m	ß 1 08 m	β 1 90 m
12	α 4 55 m	α 4 54 m	α 4 55 m	a 3 22 m	a 3 35 m
14	0. 1.00 m	0. 1.0 T III	0 1.00 m	0.9.22 m	6 1 93 m
15	a 1 95 m	α 1 94 m	a 1.95 m	a 1 89 m	$\alpha = 2.07 \text{ m}$
15	6 1 70 m	6 1 64 m	6167 m	ß 1.69 m	6 1 20 m
16	$\alpha 1.97 m$	a 1.05 m	a 1.08 m	a 1 97 m	p 1.20 m
10	6190 m	6 1 90 m	6188 m	6184 m	6 1 75 m
17	$\alpha 2.85 \text{ m}$	$\alpha 2.85 m$	$a^{2.85}$ m	p 1.04 m	g 2 86 m
18	B 0 77 s	B 0 77 s	6 0 78 s	B 0 64 s	6 0 62 s
10	р0.775 В0.85 с	р0.775 В0.85 с	р0.785 в0.85 с	р 0.04 S В 0.86 с	р 0.02 s В 0.00 s
19	p 0.85 S	p 0.85 S B 4 86	р 0.85 S В 4 00 d	р 0.80 S в 4 85 dd	p 0.33 S
21	p 4.62	p 4.80 overlenned	p 4.90 u	(10, 1, 1, 2)	(18.4, 1.5)
	a 4 00	a 4 00	(10.4)	(19.1, 1.5)	(10.4, 1.3)
	a 4.90	a 4.90	(10,0)	(10, 1, 1, 2)	(19.4, 10)
	overlapped	overlapped	(19.0)	(19.1, 1.8)	(18.4, 1.9)
22	5 91 br s	5 91 br s	5 91 br s	5 81 br s	5 98 hr s
1'a	a 4 77 m	a 4 77 m	$\alpha 4.70 \text{ m}$	5.01 01 5	5.70 01 5
1 a 2'a	6158 m	6155 m	6 1 70 m		
2 u	a 1 75 m	a 1 67 m	a 1.86 m		
	u 1.75 m	u 1.07 m	u 1.00 III		
3'a	ß 4 07 m	ß 4 04 m	ß 5 19 m		
4'a	ß 3 14 m	ß 3 12 m	ß 3 37 m		
5'a	a 3 69 m	$\alpha 3.70 \text{ m}$	a 3 75 m		
5 a 6'a	B 1 08 d (6 9)	B 1 10 d (6 4)	B 1 13 d (6 3)		
0 u 1'h	β 4 86 m	β 4 83 m	β 4 74 m		
2'h	B 1 86 m	ß 1.85 m	B 1 90 m		
20	α 1 67 m	$\alpha 1.76 \text{ m}$	α 1.68 m		
3'h	$\alpha 4.05 \text{ m}$	$\alpha 4.09 \text{ m}$	a 5 19 m		
1'b	a 3 16 m	$\alpha = 3.21 \text{ m}$	a 3 30 m		
- 0 5'h	6 3 75 m	6 3 77 m	6 3 75 m		
6'b	$\alpha = 1.12 d (6.0)$	$\alpha = 1 + 1 + 1 + (6 - 3)$	$\alpha = 1 + 10 + 16 + 10$		
1'c	$\alpha 4.88 \text{ m}$	$\alpha 4.88 \text{ m}$	$\alpha 4.88 \text{ m}$		
2'c	β 1 60 m	а т.00 III В 1 88 m	а т .00 Ш В 1 84 m		
20	$\alpha 1.84$ m	$\alpha = 1.00 \text{ m}$	$\mu 1.04 m$		
3'0	β 4 04 m	ß 5 20 m	ß 5 25 m		
30 4'c	β 4.04 III β 4.24 m	p 5.29 III B 1 12 m	ρ 5.25 m β 4 40 m		
4 C 5'o	p 4.24 III a 2.04 m	y 4.45 III a 2.01 m	p 4.40 III a 2 86 m		
50	u 5.74 III B 1 10 4 (7 2)	u 5.71 III R 1 11 4 (6 2)	u 3.00 III B 1 05 4 (6 1)		
	p 1.10 a (7.2)	p 1.11 a (6.3)	p 1.05 å (6.1)	β 1 21 hr $-$	R 1 26 hr -
3-0H				p 4.21 DF S	p 4.50 DF S

Table S1. ¹H NMR Spectroscopic Data of **2–6**^{*a*}

12-OH				β 4.62 br s	β 4.81 br s
14-OH	β 4.40 s	β 4.41 s	β 4.41 s	β 4.11 s	
21-ОН					
3'a-OH	α 4.21 s	α 4.22 s			
3'b-OH	β 4.36 s	β 4.35 s			
3'c-OH	a 5.14 s				
4'c-OH					
12-OAc	2.05 s	2.05 s	2.06 s		
3'a-OAc			2.01 s		
3'b-OAc			2.01 s		
3'c-OAc		1.95 s	1.95 s		
4'c-OAc	2.03 s	2.07 s	2.06 s		

^{*a*}Assignments of chemical shifts are based on the analysis of 1D- and 2D-NMR spectra. The overlapped signals were assigned from ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY, HSQC, and HMBC spectra without designating multiplicity. Data (δ) were measured in DMSO- d_{δ} at 400.13 MHz and referenced to the solvent residual peak at δ 2.50.³¹

Table S2. ¹³C NMR Spectroscopic Data of **2–6**^{*a*}

position	2 ^{<i>a</i>}	3 <i>a</i>	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 ^b
1	30.27 CH ₂	30.07 CH ₂	30.08 CH ₂	29.64 CH ₂	30.91 CH ₂
2	26.17 CH ₂	25.89 CH ₂	25.88 CH ₂	27.51 CH ₂	31.32 CH ₂
3	72.24 CH	71.95 CH	72.89 CH	64.63 CH	64.85 CH
4	29.67 CH ₂	29.43 CH ₂	29.81 CH ₂	33.10 CH ₂	36.67 CH ₂
5	36.53 CH	36.27 CH	36.34 CH	35.74 CH	35.98 CH
6	26.55 CH ₂	26.12 CH ₂	26.33 CH ₂	26.51 CH ₂	24.85 CH ₂
7	21.47 CH ₂	21.25 CH ₂	21.25 CH ₂	21.38 CH ₂	29.74 CH ₂
8	40.59 CH	40.34 CH	40.39 CH	40.51 CH	128.13 C
9	31.77 CH	31.49 CH	31.55 CH	31.50 CH	^c 131.57 C
10	35.00 C	34.77 C	34.79 C	34.86 C	35.98 C
11	26.32 CH ₂	$26.74 \ \mathrm{CH}_2$	26.16 CH ₂	29.73 CH ₂	30.61 CH ₂
12	76.97 CH	76.69 CH	76.74 CH	73.02 CH	71.92 CH
13	54.04 C	53.80 C	53.85 C	55.74 C	46.43 C
14	84.46 C	84.25 C	84.31 C	84.39 C	54.68 CH
15	32.38 CH ₂	32.22 CH ₂	32.27 CH ₂	32.42 CH ₂	31.32 CH ₂
16	26.99 CH ₂	26.32 CH ₂	26.78 CH ₂	26.80 CH ₂	29.74 CH ₂
17	45.65 CH	45.36 CH	45.40 CH	45.20 CH	47.09 CH
18	10.48 CH ₃	10.39 CH ₃	10.42 CH ₃	9.46 CH ₃	15.70 CH ₃
19	23.57 CH ₃	23.46 CH ₃	23.48 CH ₃	23.75 CH ₃	^c 24.85 CH ₃
20	175.52 C	175.32 C	175.39 C	176.99 C	174.89 C
21	73.34 CH ₂	73.08 CH ₂	73.15 CH ₂	73.33 CH ₂	74.04 CH ₂
22	116.77 CH	116.52 CH	116.56 CH	115.85 CH	114.87 CH
23	174.08 C	173.78 C	173.87 C	173.99 C	173.98 C
1'a	95.46 CH	95.20 CH	95.84 CH		
2'a	38.45 CH ₂	38.41 CH ₂	35.72 CH ₂		
3'a	66.46 CH	66.25 CH	69.35 CH		
4'a	82.09 CH	81.91 CH	78.87 CH		
5'a	67.76 CH	67.48 CH	68.44 CH		
6'a	17.95 CH ₃	17.80 CH ₃	18.11 CH ₃		
1'b	99.16 CH	98.82 CH	98.35 CH		
2'b	38.05 CH ₂	37.95 CH ₂	35.26 CH ₂		
3'b	66.38 CH	66.05 CH	69.52 CH		
4'b	82.19 CH	81.68 CH	78.70 CH		
5'b	67.84 CH	67.50 CH	68.35 CH		
6'b	18.09 CH ₃	17.99 CH ₃	17.80 CH ₃		
1'c	99.36 CH	98.92 CH	98.44 CH		
2'c	38.26 CH ₂	35.19 CH ₂	35.12 CH ₂		

3'c	64.04 CH	66.83 CH	66.92 CH
4'c	75.34 CH	71.98 CH	71.95 CH
5'c	66.81 CH	67.29 CH	67.28 CH
6'c	18.06 CH ₃	18.00 CH ₃	17.56 CH ₃
12-OAc	170.73 C	170.49 C	170.57 C
	21.04 CH ₃	21.05 CH ₃	21.08 CH ₃
3'a-OAc			169.82 C
			21.15 CH ₃
3'b-OAc			169.74/75 C
			21.15 CH ₃
3'c-OAc		169.58 C	169.74/75 C
		20.56 CH ₃	20.59 CH ₃
4'c-OAc	170.23 C	169.75 C	169.63 C
	20.98 CH ₃	20.79 CH ₃	20.81 CH ₃

^{*a*}Assignments of chemical shifts are based on the analysis of 1D- and 2D-NMR spectra. CH₃, CH₂, CH, and C multiplicities were determined by DEPT 90, DEPT 135, and HSQC experiments.

^{*a*}Data (δ) were measured in DMSO-*d*₆ at 176.02 MHz and referenced to the solvent residual peak at δ 39.52.³¹

^{*b*}Data (δ) were measured in DMSO-*d*₆ at 100.61 MHz and referenced to the solvent residual peak at δ 39.52.³¹

^{*c*}Data (δ) were shown in the 2D HSQC and HMBC NMR spectra.

Table S3. Cytotoxicity of $1-7^a$

compound	HT-29 ^b	MDA-	OVCAR3 ^d	MDA-
		MB-231 ^c		MB-435 ^e
1	0.28	0.31	0.10	0.17
2	5.1	8.2	2.5	5.4
3	12.4	12.8	6.2	15.6
4	25.2	14.9	8.2	22.8
5	3.6	3.2	2.4	0.9
6	>67.2	>67.2	>67.2	>67.2
7	>31.3	>31.3	>31.3	>31.3
Digitoxin ^f	0.068	0.48	0.12	0.043
Paclitaxelg	0.0008	0.0027	0.0033	0.0002

 ${}^{a}\text{IC}_{50}$ values are the concentration (μ M) required for 50% inhibition of cell viability for a given test compound with a 72 h treatment and were calculated using nonlinear regression analysis with measurements performed in triplicate and representative of three independent experiments, where the values generally agreed within 10%. ${}^{b}\text{IC}_{50}$ value toward the HT-29 human colon cancer cell line. ${}^{c}\text{IC}_{50}$ value toward the MDA-MB-231 human breast cancer cell line.

 ${}^{d}IC_{50}$ value toward the OVCAR3 human ovarian cancer cell line.

^eIC₅₀ value toward the MDA-MB-435 human melanoma cell line.

^fData reported previously.²⁸

^gPositive control.

Analytical data of (+)-digoxin (1)

(+)-*Digoxin (1).* Amorphous colorless powder; $[\alpha]^{20}_{D}$ +23 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ϵ) 218 (4.30) nm; ECD (MeOH, nm) λ_{max} ($\Delta\epsilon$) 241.2 (+7.51); IR (dried film) ν_{max} 3445, 1740, 1623, 1590, 1441, 1369, 1068, 868 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; positive-ion HRESIMS *m/z* 803.4240, calcd for C₄₁H₆₄O₁₄Na⁺, 803.4188.