Supporting Information

Restricted and Unrestricted Migration

Mechanisms of Silica Nanoparticles in

Agarose Gels and Their Utilization for the

Separation of Binary Mixtures

Matthäus Barasinski, Georg Garnweitner*

Technische Universität Braunschweig, Institute for Particle Technology and Laboratory for Emerging Nanometrology, 38104 Braunschweig, Germany

To determine the electrophoretic mobility and convert it correctly to the ζ -potential Ka needs to be calculated. With this value the right correction factor f(Ka) can be chosen for the calculation of the ζ -potential. Table S1 shows the thickness of the electric

double layer (K^{-1}) and the corresponding Ka-values depending on the TBE buffer concentration and its ionic strength, which is estimated by the measured conductivity and the following assumption:

$$\sigma = 150 \, \frac{\mu S}{cm} \quad \triangleq \quad I = 1 \; mmol$$

Next, the K-values were calculated by

$$K = \frac{1}{0.304} \sqrt{I} nm^{-1},$$

which is valid for a monovalent electrolyte at a temperature of 25°C.1

(1) Israelachvili, J. N. Intermolecular and Surface Forces, 3th ed.; Elsevier, Academic Press:

Amsterdam, 2011.

Table S1: Calculation of "Ka" to determine the right correction factor "f(Ka)"

particle	TBE buffer	measured	ionic	ĸ	K -1	Ка
size	conc.	conductivity	strength	N		
[nm]		[µS/cm]	[mmol/L]	[nm ⁻¹]	[nm]	[-]
50	0.00xTBE	3	0.02	0.02	63.85	0.78
	0.25xTBE	298	1.99	0.15	6.82	7.33
		496	3.31	0.19	5.29	9.46

	0.50xTBE					
	1.00xTBE	771	5.14	0.24	4.24	11.79
	2.00xTBE	1123	7.49	0.28	3.51	14.23
	5.00xTBE	1205	8.03	0.29	3.39	14.74
	10.00xTB E	1334	8.89	0.31	3.22	15.51
100	0.50xTBE	496	3.31	0.19	5.29	18.92
300	0.50xTBE	496	3.31	0.19	5.29	56.75

For the extraction of NP from the agarose gel the "pool method" was used. Figure S2 (top) depicts schematically the procedure to obtain the NP in the TBE buffer as a suspension, whereas Figure S2 (bottom) presents photographs indicating a particle migration (white band) from the gel into the buffer.

Figure S2: Schematic depiction of the "pool method" for extraction of particles from a

gel fragment after the electrophoretic experiment (top) and corresponding

photographs (bottom)

Figure S3: Schematic reaction path of the ninhydrin test with unmodified as well as

GLYMO-modified SiO₂ NP whereby the Ruhemann's purple is formed under the

presence of free amino groups

Figure S4: Exemplary TEM image of spherical SiO₂ nanoparticles of sample B ($x_{50,3}$ =

91 nm)

Table S5: Measured free-solution electrophoretic mobilities of the SiO₂ samples A-D

and their corresponding Smoluchowski ζ-potentials as well as their "Ka" values

Electrophoretic mobility [µmcm/V*s]					
sampl	at 60	at 80	at 100		
е	V	V	V		
А	-2.11	-2.14	-2.20		
В	-2.40	-2.56	-2.64		
С	-2.56	-2.75	-2.80		
D	-3.03	-3.22	-3.28		

Zeta potentials [mV] sampl at 100 Ка [-] at 60 V at 80 V V е А -31.5 -31.9 -32.8 10.78 -38.1 -39.3 В -35.8 17.59 С -38.2 -41.0 -41.8 26.67 -45.2 -48.0 -48.9 D 55.99

Figure S6: Photograph of SiO₂ NP ($x_{50,3}$ = 54 nm) in a 0.2 wt.-% agarose gel after

migration for 40 min at an applied voltage of 100 V. All pockets were filled with the

same sample so that the smiling effect is visible

$SiO_{2} in 0.5xTBE$ $SiO_{2} in 0.5xTBE$ $SGT (x_{50,3} = 46 nm)$ $SGT (x_{50,3} = 75 nm)$ $SG (x_{50,3} = 58 nm)$ $SAA (x_{50,3} = 155 nm)$ $SAA (x_{50,3} = 3997 nm)$ $SA (x_{50,3} = 3000 nm)$ $SP (x_{50,3} = 168 nm)$					35 30 25 20 15 10 5 20 20	$SiO_{2} in H_{2}O$ $S(x_{50,3} = 55 nm)$ $SGT(x_{50,3} = 90 nm)$ $SG(x_{50,3} = 67 nm)$ $SAA(x_{50,3} = 198 nm)$ $SAC(x_{50,3} = 375 nm)$ $S2A(x_{50,3} = 1443 nm)$ $SA(x_{50,3} = 4343 nm)$ $SP(x_{50,3} = 222 nm)$ M $SP(x_{50,3} = 222 nm)$ M $SP(x_{50,3} = 222 nm)$ M $SP(x_{50,3} = 222 nm)$ $SP(x_{50,3} = 22 nm)$
					Ка	
sample	size	size	μ <i>Ε</i>	ζ at 100 V	_	
	[nm]	[nm]	[µmcm/Vs -	[mV]	[-]	
]			
S	55	46	-2.9	-43	10	
SGT	90	75	-2.3	-34	17	
SG	67	58	-1.9	-29	13	
SAA	198	155	-1.8	-26	37	
SAC	375	531	-1.5	-23	71	
S2A	1443	3997	-0.1	-2	273	
SA	4343	3000	0.6	9	822	
SP	222	168	1.4	21	42	

Figure S7: PSD in H₂O as well as 0.5xTBE buffer solution, measured free-solution

electrophoretic mobilities, Smoluchowski ζ-potentials and "Ka" values *of modified*

SiO₂ NP

Figure S8: PSD of unmodified (S) and GLYMO-modified SiO₂ NP (SG) for the

unrestricted separation