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DFT calculation methods

The properties of MPc-based MOFs were calculated using first-principles methods based on

density functional theory (DFT), as embedded in the Vienna ab initio simulation package code.

The projected augmented wave method with the generalized gradient approximation (GGA)

exchange-correlation potential was applied. All self-consistent calculations were performed

with a plane wave cutoff energy of 500 eV. Geometric optimizations were carried out without

any constraint until the force on each atom is less than 0.01 eV·Å−1 and the change of total

energy per cell is smaller than 10−4 eV. For monolayer MPc-MOF crystalline calculations, the

Brillouin zone K-mesh sampling was set as 15×15×1. To eliminate the interaction between

layers along the z direction, we introduced a vacuum layer with thickness of 15 Å. The lattice

constant a was fully relaxed. To better describe the localized 3d electrons of transition metals,

additional on-site Hubbard U terms were added in calculations. Different U values were tested.

Tight-binding analysis

To understand the intriguing physical properties of Lieb-lattice system [Fig. S1(a)], we start

from the fundamental Hamiltonian of Lieb-lattice with only the nearest-neighbor (NN, t) and

the next-NN (NNN, t′) hoppings:

H0 =
∑
i

εic
†
ici +

∑
〈i,j〉

tc†icj +
∑
〈〈i,j〉〉

t′c†icj +H.c., (1)

where εi is the on-site energy (OSE) on site i, which is set to be the same for edge-center sites,

A and C. The energy difference between B and A sites is defined as ∆E = εB − εA. The

well-known Lieb lattice is studied in the ideal case with both t′ and ∆E equal to zero. By trans-

forming H0 into momentum space using H =
∑

k Ψ†kH(k)Ψk, where Ψ†k = (c†Ak, c
†
Bk, c

†
Ck).

2



We get the matrix Hamiltonian for the ideal scenario:

H(k) =

 0 −2t cos(
−→
k ·

−→v1
2

) −2t cos(
−→
k ·

−→v2
2

)

−2t cos(
−→
k ·

−→v1
2

) 0 0

−2t cos(
−→
k ·

−→v2
2

) 0 0

 .

The analytical solutions are E1 = 0 and E2,3=±2t

√
cos2(

−→
k ·

−→v1
2

) + cos2(
−→
k ·

−→v2
2

), which leads

to the ideal flat band in the middle of Dirac bands, as shown in Fig. S1(b). Different from

trivial flat band due to localized states without interaction, the flat band here is due to structural

destructive interference with a finite hopping t, which is proposed to hold, for example, intrigu-

ing superconductivity, ground state ferromagnetism, and fractional quantum Hall state. With a

non-zero ∆E, the matrix Hamiltonian changes to

H(k) =

 ∆E −2t cos(
−→
k ·

−→v1
2

) −2t cos(
−→
k ·

−→v2
2

)

−2t cos(
−→
k ·

−→v1
2

) 0 0

−2t cos(
−→
k ·

−→v2
2

) 0 0

 .

The resulted eigenstates are E2,3 =
{

∆E ±
√

(∆E)2 + 16t2[cos2(
−→
k ·

−→v1
2

) + cos2(
−→
k ·

−→v2
2

)]
}
/2

and E1 = 0. The dispersion of upper and lower Dirac bands remain symmetric with a quenched

bandwidth because of the decrease of the effective “t”. The middle flat band remains the same

as the ideal case, while the triple degeneracy at M point is lifted by moving upper/lower Dirac

band away from the flat band for positive/negative ∆E, as shown in Fig. S1(c) and (d). The

corresponding band gap equals to ∆E, which is the OSE difference between the corner and

edge-center states. It is important to mention that due to nonzero ∆E, the topological invariant

for the three bands changes accordingly, while there is still a double degeneracy between the

Dirac and flat band at the M point, making the system remains topological nontrivial.

When further considering the NNN hopping effect with nonzero t′, the corresponding matrix

Hamiltonian evolves to:

H(k) =

 ∆E −2t cos(
−→
k ·

−→v1
2

) −2t cos(
−→
k ·

−→v2
2

)

−2t cos(
−→
k ·

−→v1
2

) 0 −4t′ cos(
−→
k ·

−→v1
2

) cos(
−→
k ·

−→v2
2

)

−2t cos(
−→
k ·

−→v2
2

) −4t′ cos(
−→
k ·

−→v1
2

) cos(
−→
k ·

−→v2
2

) 0

 ,
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where the NNN hopping term HAC is added as −4t′ · cos(
−→
k ·

−→v1
2

) · cos(
−→
k ·

−→v2
2

). Clearly, when

kx or ky equals zero, HAC term becomes zero. Therefore, the band structure along M −X/Y

remains the same as the case without HAC , so does the corresponding topological properties

related to the M point degeneracy. The band structure along other k-paths do change with the

inclusion of HAC , where the middle band becomes no longer flat across the whole Brillouin

zone and tends to getting close to one of the Dirac band. Specially, when t′ = ±0.5t, it contact

with the lower/upper Dirac band at the Γ point. With further increasing of the t′, the middle

band and Dirac band cross at some points between Γ and M , leading to the formation of type-II

Dirac point.

Topological characterization

Topological properties are studied by adding one NNN spin-orbit coupling (SOC) term, HSOC :

Hsoc = iλ
∑
〈〈i,j〉〉

vijc
†
iσzcj +H.C., (2)

where λ describes the SOC strength, σz is the Pauli matrix, vij corresponds to the magnetic

flux, which can be viewed as a hopping phase with positive/negative unit for clockwise/anti-

clockwise case. The nontrivial topology of the systems can be further confirmed through the

topological invariant calculation, i.e., Chern number (C), based on Kubo formula using :

C =
1

2π

∫
BZ

d2
−→
k Ω(

−→
k ), Ω(

−→
k ) =

∑
n

fnΩn(
−→
k ), (3)

Ωn(
−→
k ) = −

∑
n′ 6=n

2Im
〈Ψnk|ν̂x|Ψn′k〉〈Ψn′k|ν̂y|Ψnk〉

(εn′k − εnk)2
, (4)

where n is the band index here, Ψnk and εnk are the eigenstate and eigenvalue of the band n,

respectively. fn is the Fermi distribution function, ν̂x/y is the velocity operator. The Chern

numbers of different bands for different systems are calculated, where the bottom and the top
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bands have a nonzero Chern number (±1) and the middle band has a zero Chern number for the

ideal scenario. After adding the OSE difference term ∆E, the Chern number for the isolated

Dirac band changes to zero, while the remaining two bands that in contact having a nonzero

Chern number (±1). Further inclusion of the NNN hopping interaction does not change the

topological invariant before the isolated band contacts the middle band. This is consistent with

our previous conclusions that the topological properties are mainly related the the M point

features. After the band closing with t′ > −0.5t, the topological invariant become the same as

the ideal one again. Similarly, calculations of the evolution of Wannier charge centers and the

Berry curvature distribution can further confirm the topological features, as shown in Fig. S6

for the t′ = −0.5t and ∆E > 0 scenario.

As a cross check, we also characterize the topological nature of the strained ZnPc by calcu-

lating its Z2 number. Considering the the system has spatial inversion symmetry, its Z2 invariant

can be computed according to the Fu-Kane formalism, which simply counts the number of odd

parity occupied states at the time-reversal invariant points. Based on our calculations, the num-

bers of occupied states with odd parity are 37, 42, 42, and 38 at , X, Y, and M points, leading to

a Z2 invariant of 1, again confirming that the 2D sheet is topologically nontrivial under strain.

Time-reversal symmetry broken QSH effect

It is important to mention that to observe the time-reversal symmetry broken QSH effect, sys-

tems are required to have both weak electron-electron interaction and disorder. Because the

Lieb-electrons in MPc-MOF system are mainly contributed by the p-orbitals of the organic lig-

ands, their electron-electron interaction should be quite small. Meanwhile, due to the delocal-

ization nature of the π-conjugation bands near the Fermi level, the on-site coulomb interaction

could be very small too. Therefore, it is reasonable to expect the time-reversal symmetry bro-

ken QSH effect to be observed in MPc-MOF system. On the other hand, the SOC gap and the
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stability of the MPc-MOF are also very important, which require a large SOC gap and stable

structure with weak disorder. These could possibly be achieved by selecting metal elements

with large intrinsic SOC and choosing high-quality substrates.

LDA and LDA+U calculation for magnetic MPc-MOF

To understand the electronic and magnetic properties of magnetic MPc-MOF, we used CuPc-

MOF as a representative example for detailed studies. We first performed DFT LDA calculation

by purposely turning of the spin degree of freedom, which usually can provide very fundamental

information about the electronic properties of the system. The band structure shows one isolated

band right at the Fermi level besides the three Lieb bands as observed in nonmagnetic systems

[Fig. S7(a)]. The band at the Fermi level is mainly contributed by Cu d electrons that is exactly

half-filled, consistent with d9 electronic configuration of Cu2+. The missing of localized spin

state is the known failure of the LDA when treating the strong correlation effect. A common

remedy is to apply the LDA+U calculation to properly treat the localized d electrons. Our

LDA+U (U=4 eV, J=0.9 eV) calculation shows clearly isolated spin-up and spin-down bands

separated by the Fermi level, consistent with the physical picture of localized S=1/2 spins [Fig.

S7(b)]. We further tested different U values, which solely modifies the gap size between the

spin-up and spin-down band and does not change the physics [Fig. S7(b)-(f)]. The intrinsic

system is therefore a magnetic insulator. Because of the direct band gap at the M point is due

to the charge transfer induced by the OSE difference between corner and edge-center state, the

system is intrinsically, therefore, topological trivial. Interestingly, we notice the Lieb-bands are

also spin splitted and shift the same direction as the Cu local spins, indicating a ferromagnetic

interaction between the itinerant π electrons with the localized Cu spins.
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Supplementary Figure S1. Tight-binding analysis of the 2D Lieb-lattice model. (a) Lieb-
lattice structure with one corner and two edge-center states. (b) Band structure of ideal Lieb
lattice. (c) and (d) Non-ideal Lieb lattice with positive and negative OSE ∆E that open a charge
transfer gap above and below the middle flat band, respectively. (e) and (f) Strongly distorted
Band structure of Lieb lattice due to the NNN interaction (t′ = 0.5t) for the case without and
with negative ∆E, respectively.
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Supplementary Figure S2. Band structure engineering by modifying local chemical po-
tential of corner state. (a) Band structure of MgPc-MOF. (b)-(d) Same as (a) for CaPc-MOF,
NiPc-MOF, and ZnPc-MOF, respectively.
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Supplementary Figure S3. Band structure engineering by changing local chemical poten-
tial of edge-center state. (a) Band structure of ZnPc-MOF with H. (b)-(d) Same as (a) for
ZnPc-MOF with Br, Cl, and F replacing H, respectively.
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Supplementary Figure S4. Spin-orbit coupling effect to the band structure. (a) Band struc-
ture of ZnPc-MOF with a compressive strain of 3.8% without SOC, showing the gap closing
between the middle and lower Dirac bands. (b) and (c) Enlarged band structure near Fermi
level around M point without and with SOC, respectively. A gap of around 3 meV at M point
induced by SOC indicates the topological nontrivial states.
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Supplementary Figure S5. Topological edge states of strained ZnPc-MOF. (a) Maximally
localized Wannier function fitted band structure using Wannier90 package. (b) Band structure
of ribbon calculation of ZnPc-MOF, which shows clear edge states (red color) that connect
bulk state (yellow color). (c) and (d) Surface states calculation based on Wannier fitted TB
Hamiltonian with a semi-infinite structure using Green’s function, where yellow highlighted
states indicate the topological surface state.
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Supplementary Figure S6. Evolution of Wannier charge center and the Berry curvature of
strained ZnPc-MOF. (a) The evolution of Wannier charge center for the bottom spin-up/down
(blue/red colored dots) Dirac bands, yielding an accumulation of ±π that confirms the topolog-
ical insulator state. (b) Spin Berry curvature for spin-up/down states with red and blue color
representing positive and negative values.

Supplementary Figure S7. LDA spinless and LDA+U spin polarized calculation of CuPc-
MOF. (a) Band structure of CuPc-MOF based on LDA spinless calculation. (b)-(f) Same as (a)
for LDA+U calculations with different U values.
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