Supporting Information

Synthesis of Tetrasubstituted Furans through

 One-pot Formal [3+2] Cycloaddition

 One-pot Formal [3+2] Cycloaddition Utilizing [1,2]-Phospha-Brook Rearrangement

 Utilizing [1,2]-Phospha-Brook Rearrangement}
Azusa Kondoh, ${ }^{b}$ Kohei Aita, ${ }^{a}$ Sho Ishikawa, ${ }^{a}$ and Masahiro Terada* ${ }^{a}$
${ }^{a}$ Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578, Japan
${ }^{b}$ Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Contents

General Information S2
Experimental Procedure S3
Analytical Data S7
References S15
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 3-15 S16

General Information

Unless otherwise noted, the reactions were carried out with dried glassware under argon atmosphere. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard ($\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}$, TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sep}=$ septet, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECA600 (150 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard ($\left.\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: 49.0 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL JNM-ECA600 (243 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution as an external standard (0.0 ppm in CDCl_{3}). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$). Flash column chromatography was performed on silica gel 60 N (spherical, neutral, $40-50 \mu \mathrm{~m}$; Kanto Chemical Co., Inc.). High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Materials: Unless otherwise noted, materials were purchased from Wako Pure Chemical Industries, Ltd., Tokyo Chemical Industry Co., LTD., Aldrich Inc., and other commercial suppliers and were used without purification. Dichloromethane, tetrahydrofuran and toluene were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Other solvents were purchased from commercial suppliers as dehydrated solvents, and used under argon atmosphere.

Experimental Procedure

Procedure for Preparation of Propargyl Alcohols 1.

Propargyl alcohols 1 were prepared by the 1,2-addition of a dimethyl phosphite to alkynyl ketones by using a substoichiometric amount of (trimethylsilyl)methylmagnesium chloride as a Brønsted base. ${ }^{\text {S1 }}$ Synthesis of 1a is representative.

A mixture of $\mathbf{S 1}(1.9 \mathrm{~g}, 10 \mathrm{mmol})$ and dimethyl phosphite ($1.8 \mathrm{~mL}, 20 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . Then a solution of (trimethylsilyl)methylmagnesium chloride ($1.0 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}, 5.0 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added dropwise to the mixture, and the resulting mixture was stirred at that temperature for 3 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude solid was purified by reprecipitation from methanol and hexane to afford $\mathbf{1 a}(2.4 \mathrm{~g}, 8.1 \mathrm{mmol}, 81 \%)$ as a white solid.

General Procedure for One-pot Formal [3+2] Cycloaddition of Propargyl Alcohol 1 with Aldehyde 2.

The reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ is representative.
A solution of $\mathbf{1 a}(74 \mathrm{mg}, 0.25 \mathrm{mmol})$ and benzaldehyde ($\mathbf{2 a}$) $(51 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was stirred at $-60{ }^{\circ} \mathrm{C}$ for 20 min . Then, a solution of $t \mathrm{BuOK}$ in THF $(1.0 \mathrm{M}, 25 \mu \mathrm{~L}, 0.025 \mathrm{mmol})$ was added to the solution at $-60^{\circ} \mathrm{C}$, and the resulting mixture was stirred at that temperature for 3 h . NIS ($68 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added, and the mixture was allowed to warm to room temperature. After stirred for 3 h , the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt $=30: 1)$ to provide 4aa $(68 \mathrm{mg}, 0.17 \mathrm{mmol}, 67 \%)$ as a pale yellow solid.

Gram-Scale Synthesis.

A solution of $\mathbf{1 a}(1.2 \mathrm{~g}, 4.0 \mathrm{mmol})$ and benzaldehyde (2a) $(0.82 \mathrm{~mL}, 8.0 \mathrm{mmol})$ in DMF $(16 \mathrm{~mL})$ was stirred at $-60{ }^{\circ} \mathrm{C}$ for 20 min . Then, a solution of $t \mathrm{BuOK}$ in THF ($1.0 \mathrm{M}, 0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}$) was added dropwise to the solution at $-60^{\circ} \mathrm{C}$, and the resulting mixture was stirred at that temperature for 3 h . NIS ($1.1 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added, and the mixture was allowed to warm to room temperature. After stirred for 3 h , the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography
(hexane/AcOEt $=30: 1$) to provide $\mathbf{4 a a}(1.1 \mathrm{~g}, 2.6 \mathrm{mmol}, 66 \%)$ as a pale yellow solid.

Procedure for Pd-Catalyzed Reactions (Scheme 5a).

Sonogashira Coupling Reaction (Condition A)

To a solution of $\mathbf{4 a a}(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ in trimethylamine $(1.0 \mathrm{~mL})$ were sequentially added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}$, $10 \mu \mathrm{~mol}), \mathrm{CuI}(1.9 \mathrm{mg}, 1 \mu \mathrm{~mol})$ and phenylacetylene ($33 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$). The resulting mixture then was stirred at $50{ }^{\circ} \mathrm{C}$ with oil bath for 8 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt $=50: 1$) to furnish $\mathbf{8}(37 \mathrm{mg}, 0.099 \mathrm{mmol}, 99 \%)$ as an orange solid.

Suzuki-Miyaura Coupling Reaction (Condition B)

$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol}), \mathrm{K}_{3} \mathrm{PO}_{4}(43 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{PhB}(\mathrm{OH})_{2}(18 \mathrm{mg}, 0.15 \mathrm{mmol})$ were added to a solution of $\mathbf{4 a a}(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$, and the resulting mixture was heated at $100{ }^{\circ} \mathrm{C}$ with oil bath for 24 h . After cooled to room temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica-gel column chromatography (hexane/AcOEt $=50: 1$) to provide 9 ($34 \mathrm{mg}, 0.097$ mmol, 97%) as a pale yellow solid.

Migita-Kosugi-Stille Coupling Reaction (Condition C)

To a mixture of $4 \mathbf{a a}(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ in DMF $(1.0 \mathrm{~mL})$ was added tributyl(vinyl)tin ($58 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$). The resulting mixture was then heated at $120^{\circ} \mathrm{C}$ with oil bath for 19 h . After cooled to room temperature, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica-gel column chromatography (hexane/AcOEt $=50: 1$) to provide $10(27 \mathrm{mg}, 0.089 \mathrm{mmol}, 89 \%)$ as a pale yellow oil.

Mizoroki-Heck Reaction (Condition D)

To a solution of 4aa ($40 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, and triphenylphosphine ($3.9 \mathrm{mg}, 0.015$ $\mathrm{mmol})$ in DMF (2.0 mL) was added triethylamine ($28 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and ethyl acrylate ($16 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$). The resulting mixture was then heated at $90{ }^{\circ} \mathrm{C}$ with oil bath for 19 h . After cooled to room temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica-gel column chromatography (hexane/ $\mathrm{AcOEt}=30: 1$) to provide $11(31 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%)$ as a yellow oil.

Procedure for Lithiation of 4aa and Trapping with Electrophiles (Scheme 5b).

The reaction of 4aa with benzaldehyde is representative.
To a solution of $\mathbf{4 a a}(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added a solution of $n \mathrm{BuLi}$ in hexane $(1.6 \mathrm{M}, 80 \mu \mathrm{~L}$, 0.12 mmol) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , benzaldehyde ($15 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added. The resulting mixture was allowed to warm to room temperature, and stirred for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt $=$ $10: 1)$ to provide $12(35 \mathrm{mg}, 0.091 \mathrm{mmol}, 91 \%)$ as a colorless oil.

Procedure for Diels-Alder Reaction and Deoxygenative Aromatization (Scheme 5c).

Diels-Alder Reaction

To a solution of $\mathbf{4 a a}(0.20 \mathrm{~g}, 0.50 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ were sequentially added $\mathbf{1 4}(0.36 \mathrm{~mL}, 1.5 \mathrm{mmol})$, and cesium fluoride ($0.38 \mathrm{~g}, 2.5 \mathrm{mmol}$). The resulting mixture then was stirred at room temperature for 24 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and the product was extracted with AcOEt . The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mixture was purified by silica-gel column chromatography (hexane/AcOEt = 30:1) followed by gel permeation chromatography to proviede $15(0.22 \mathrm{~g}, 0.46$ mmol, 91%) as a yellow sticky oil.

To a reaction flask containing THF $(0.50 \mathrm{~mL})$ were added titanium tetrachloride ($71 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$), a solution of lithium aluminum hydride ($9.9 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF (1.0 mL) and triethylamine ($14 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$), and the mixture was stirred at room temperature for 10 min , and then at reflux for 30 min . After cooled to room temperature, a solution of $15(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL})$ was added, and the resulting mixture was stirred at room temperature for 48 h . The reaction was then quenched with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $0{ }^{\circ} \mathrm{C}$, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by silica-gel column chromatography (hexane/AcOEt $=30: 1$) to provide $16(61 \% \mathrm{NMR}$ yield) along with a small amount of impurities ($<5 \%$). Further purification by recrystallization from hexane provided analytically pure $\mathbf{1 6}$ as a white solid.

Analytical Data

2-Butyl-4-dimethoxyphosphoryloxy-1,4-diphenylbuta-2,3-dien-1-ol (3aa):

$31 \mathrm{mg}, 31 \%$ yield, Eluent, hexane/AcOEt $=1: 1$; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer $\delta 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.45(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 6 \mathrm{H}), 4.75(\mathrm{brs}, 1 \mathrm{H}), 5.33(\mathrm{~s}$, $1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 4 \mathrm{H})$; minor diastereomer $\delta 0.81(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.18(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.75(\mathrm{brs}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.46(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) identifiable peaks for major diastereomer $\delta 13.8,22.33,29.6$ (2C), $54.7(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 54.8(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 76.0,189.9(\mathrm{~d}, J=2.9 \mathrm{~Hz})$; identifiable peaks for minor diastereomer $\delta 13.8,22.29$, $29.4,31.0,54.8(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 54.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 77.2,188.4(\mathrm{~d}, J=2.9 \mathrm{~Hz})$; other peaks $\delta 124.5,124.6,126.9$, $127.3,127.4,127.5,127.6(\mathrm{~d}, ~ J=7.2 \mathrm{~Hz}), 127.9,128.1,128.31,128.33,128.37,128.42,129.0(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, $129.2,132.5\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}\right.$), 141.3, 141.6; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.9$ (major), -0.6 (minor); IR (ATR): 3370, 2954, 2930, 2865, 1952, 1497, 1451, 1268, 1191, 1038, 1009, 894, 853, 795, 763, 730, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P} 425.1488$, Found 425.1488.

4-Butyl-3-iodo-2,5-diphenylfuran (4aa):

$68 \mathrm{mg}, 67 \%$ yield, Eluent, hexane $/ \mathrm{AcOEt}=50: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.69(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{tt}$, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{dd}, J=7.8$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,26.9,31.7,71.5,125.6$, $126.0,126.4,127.5,128.1,128.3,128.7,130.4,130.9,148.0,150.1$; IR (ATR): 3056, 2955, 2928, 2859, 1669, 1604, 1492, 1481, 1445, 1265, 1038, 946, 795, 764, $690 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{IO} 402.0481$, Found $402.0480 ; \mathrm{mp} .52 .0-55.0^{\circ} \mathrm{C}$.

4-Cyclohexyl-3-iodo-2,5-diphenylfuran (4ba):

$65 \mathrm{mg}, 61 \%$ yield, Eluent, hexane/AcOEt $=50: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.23-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 2 \mathrm{H})$, $2.86(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{tt}, J$ $=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{dd}, J=7.2$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.9,26.9,31.1,37.2,67.0,127.0,128.08,128.12,128.2,128.32$, 128.35 (2C), 130.6, 131.3, 149.2, 151.1; IR (ATR): 3049, 2927, 2847, 1604, 1478, 1444, 1111, 1040, 936, 908, 761, $696,666 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{IO} 428.0637$, Found 428.0638; mp. 123.0-126.0 ${ }^{\circ} \mathrm{C}$.

3-Iodo-2,4,5-triphenylfuran (4ca):

$56 \mathrm{mg}, 53 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.21(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{tt}, J$ $=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 7 \mathrm{H}), 8.14(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.2,125.5,126.5,127.7,127.9,128.1,128.3,128.38,128.41,128.7,130.0,130.2,130.5,133.9,148.4,150.5$; IR
(ATR): $3064,3025,2939,2852,1600,1486,1442,1176,1063,1025,940,761,688,660 \mathrm{~cm}^{-1} ;$ HRMS (FD+) $\mathrm{m} / \mathrm{z}:$ [M] Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{IO} 422.0168$, Found 422.0167; mp. 157.0-160.0 ${ }^{\circ} \mathrm{C}$.

3-Iodo-4-(4-methoxyphenyl)-2,5-diphenylfuran (4da):

43% NMR yield, 49 mg , abt. 95% purity, Eluent, hexane $/ \mathrm{AcOEt}=30: 1$ (analytically pure product was isolated after purification by recrystallization from AcOEt and hexane, $22 \mathrm{mg}, 19 \%$); Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{tt}, J=7.2,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 4 \mathrm{H}), 8.13$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 56.2,72.0,114.2,125.4,126.0,126.5,127.6,128.3,128.38$, 128.40 (2C), 130.2, 130.3, 131.7, 148.4, 150.3, 159.4; IR (ATR): 3077, 2954, 2836, 1604, 1510, 1489, 1940, 1290, 1247, 1175, 1061, 1027,939, 832, 761, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{IO}_{2} 452.0273$, Found 452.0273; mp. 139.0-142.0 ${ }^{\circ} \mathrm{C}$.

4-(4-Chlorophenyl)-3-iodo-2,5-diphenylfuran (4ea):

$\mathrm{Ph}{ }^{\mathrm{O}} \mathrm{Ph} 83 \mathrm{mg}, 73 \%$ yield, Eluent, hexane/ $\mathrm{AcOEt}=30: 1$; Pale yellow solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.7,125.6,126.5,126.6,127.9,128.4$ (2C), 128.5, 129.0, 129.7, 130.1, 131.9, 132.3, 134.2, 148.7, 150.8; IR (ATR): 3082, 2972, 2902, 1599, 1484, 1442, 1398, 1088, 1059, 1014, 941, 839, 766, $688 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClIO} 455.9778$, Found 455.9778; mp. $138.0-142.0^{\circ} \mathrm{C}$.

3-Iodo-2,5-diphenyl-4-(2-tolyl)furan (4fa):

$34 \mathrm{mg}, 32 \%$ yield, Eluent, hexane $/ \mathrm{AcOEt}=30: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s}$, $3 \mathrm{H}), 7.19(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (ddd, $J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{dd}, J=$ $7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.0,71.6,124.6,126.28,126.32,127.5,127.6,128.3,128.4$, $128.5,128.6,130.2,130.3,130.4,130.8,133.7,137.7,148.0,150.3$; IR (ATR): 3057, 3020, 2921, 2849, 1670, 1599, 1483, 1444, 1245, 1179, 1062, 1029, 939, 910, 761, $688 \mathrm{~cm}^{-1}$; HRMS (FD+) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{IO} 436.0324$, Found 436.0324.

3-Iodo-2,5-diphenyl-4-(2-thienyl)furan (4ga):

$86 \mathrm{mg}, 80 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10$ $(\mathrm{dd}, J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}$, Ar $=2$-thienyl $\quad 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=5.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 72.5,121.0,125.6,126.5,127.2$, $127.5,128.1,128.4$ (3C), 129.0, 129.6, 130.0, 134.2, 150.0, 150.6; IR (ATR): 3074, 3026, 2927, 2849, 1599, 1478, 1442, 1218, 1156, 1054, 943, 917, 849, 761, $687 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{IOS} 427.9732$, Found 427.9731; mp. 123.0-125.0 ${ }^{\circ} \mathrm{C}$.

4-Butyl-3-iodo-2-(4-methoxyphenyl)-5-phenylfuran (4ha):

$76 \mathrm{mg}, 70 \%$ yield, Eluent, hexane/ $\mathrm{AcOEt}=30: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.68(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $\left.\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \quad 3 \mathrm{H}\right), 6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,26.9,31.7,55.3,70.0,113.7$, $123.2,125.4,125.8,127.3,127.9,128.6,131.0,147.5,150.3,159.4$; IR (ATR): 3033, 2952, 2856, 1604, 1549, 1493, 1459, 1303, 1240, 1176, 1100, 1034, 944, 818, 764, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{IO}_{2}$ 432.0586, Found 432.0587.

4-Butyl-2-(4-fluorophenyl)-3-iodo-5-phenylfuran (4ia):

$63 \mathrm{mg}, 60 \%$ yield, Eluent, hexane $/ \mathrm{AcOEt}=50: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.67(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=$ $\left.\mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4} \quad 9.0,9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=7.2,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,26.9,31.7,71.2,115.4(\mathrm{~d}, J=$ $21.5 \mathrm{~Hz}), 125.6,126.0,126.7(\mathrm{~d}, ~ J=2.9 \mathrm{~Hz}), 127.6,128.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.7,130.8,148.1,149.4,162.4(\mathrm{~d}, J=$ 247.1 Hz) IR (ATR): 3072, 2949, 2858, 1591, 1545, 1486, 1445, 1234, 1159, 1093, 1038, 942, 834, 764, $691 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FIO} 420.0386$, Found 420.0385; mp. 51.0-53.0 ${ }^{\circ} \mathrm{C}$.

4-Butyl-3-iodo-5-phenyl-2-(2-tolyl)furan (4ja):

$79 \mathrm{mg}, 76 \%$ yield, Eluent, hexane/AcOEt $=40: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.70(\mathrm{~m}, 2 \mathrm{H})$, $\mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4} \quad 7.27-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,20.7,22.8,27.0,31.8,74.3,124.7,125.4$ (2C), 127.4, 128.6, 129.2, 130.0, $130.6,130.8,131.1,137.9,148.3,152.7$; IR (ATR): 3060, 2957, 2929, 2870, 1492, 1454, 1086, 948, 908, 761, 723, $693 \mathrm{~cm}^{-1}$; HRMS (FD+) $\mathrm{m} / \mathrm{z}:$ [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{IO} 416.0637$, Found 416.0638.

4-Butyl-3-iodo-5-phenyl-2-(2-thienyl)furan (4ka):

70% NMR yield, 71 mg , abt. 95% purity, Eluent, hexane $/ \mathrm{AcOEt}=40: 1$ (analytically pure product was isolated after purification by recrystallization from hexane, $17 \mathrm{mg}, 17 \%$); Brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 2 \mathrm{H})$, $\mathrm{Ar}=2$-thienyl 2.63-2.67 (m, 2H), 7.12 (dd, $J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=4.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9$, $22.7,26.7,31.6,71.4,124.8,125.1,125.6,126.0,127.3,127.5,128.7,130.6,132.5,147.4,147.5$; IR (ATR): 3073, 2944, 2857, 1589, 1485, 1199, 1074, 1038, 930, 896, 767, $688 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IOS}$ 408.0045, Found 408.0046; mp. 61.0-64.0 ${ }^{\circ} \mathrm{C}$.

2-Cyclohexyl-3-iodo-4,5-diphenylfuran (4ma):

$74 \mathrm{mg}, 69 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.29-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.90$ $(\mathrm{m}, 2 \mathrm{H}), 1.93-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$
$(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (dd, $J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.9,26.2,31.0,37.8,69.9,125.1,125.2,127.1$, $127.8,128.3,128.5,130.3,130.6,134.0,147.3,158.8$; IR (ATR): 3054, 2925, 2854, 1599, 1557, 1479, 1442, 1249, 1170, 1068, 1011, 985, 951, 766, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{IO} 428.0637$, Found 428.0637; mp. $90.0-93.0^{\circ} \mathrm{C}$.

4-Butyl-3-iodo-5-(4-methoxyphenyl)-2-phenylfuran (4ab):

$77 \mathrm{mg}, 72 \%$ yield, Eluent, hexane/AcOEt $=40: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.65(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $\left.\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \quad 3 \mathrm{H}\right), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,26.8,31.8,55.3,71.3$, $114.1,123.8,124.6,126.3,127.1,127.9,128.3,130.6,148.2,149.5,159.1 ;$ IR (ATR): 3062, 2955, 2929, 2858, $2834,1609,1504,1462,1293,1251,1177,1090,1039,890,763,690 \mathrm{~cm}^{-1} ; \mathrm{HRMS}(\mathrm{FD}+) \mathrm{m} / \mathrm{z}:$ [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{IO}_{2} 432.0586$, Found 432.0586 .

4-Butyl-3-iodo-5-(3,4-methylenedioxyphenyl)-2-phenylfuran (4ac):

$74 \mathrm{mg}, 66 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.64(\mathrm{~m}, 2 \mathrm{H})$, 2.59-2.64 (m, 2H), $6.00(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 13.9,22.8,26.8,31.7,71.3,101.2,106.4,108.6,119.7,124.9,125.1,126.3,128.0,128.3,130.4,147.1,147.9$ (2C), 149.6; IR (ATR): 2956, 2925, 2858, 1599, 1478, 1387, 1222, 1037, 947, 869, 818, 762, $687 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{FD}+) \mathrm{m} / \mathrm{z}:[\mathrm{M}]$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{IO}_{3} 446.0379$, Found 446.0379; mp. 91.0-93.0 ${ }^{\circ} \mathrm{C}$.

4-Butyl-5-(4-cyanophenyl)-3-iodo-2-phenylfuran (4ad):

$55 \mathrm{mg}, 51 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.73(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{tt}, J$ $\left.\mathrm{Ar}=4-\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 8.06 (dd, $J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,27.2,31.4,72.1,110.3,118.8,125.3$, 126.6, 128.5, 128.7, 129.4, 129.8, 132.5, 134.8, 145.9, 151.6; IR (ATR): 2965, 2928, 2857, 2224, 1606, 1477, 1262, 1179, 1075, 943, 838, 767, $688 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{21} \mathrm{H}_{18}$ INO 427.0433, Found 427.0433; mp. $95.0-98.0^{\circ} \mathrm{C}$.

4-Butyl-3-iodo-5-(4-nitrophenyl)-2-phenylfuran (4ae):

[^0] 1448, 1335, 1259, 1105, 943, 850, 766, $690 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{INO}_{3} 447.0331$, Found
447.0331; mp. 103.0-106.0 ${ }^{\circ} \mathrm{C}$.

4-Butyl-5-(2-chlorophenyl)-3-iodo-2-phenylfuran (4af):

$75 \mathrm{mg}, 69 \%$ yield, Eluent, hexane/AcOEt $=50: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.54(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.47(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.7,22.3,26.1,31.5,69.0,126.4,126.5,127.6,128.1,128.3,130.0,130.1,130.2,130.4,131.9$, $134.4,146.5,151.1$; IR (ATR): 3059, 2955, 2926, 2858, 1483, 1438, 1236, 1091, 907, 759, 731, $690 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:$ [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClIO} 436.0091$, Found 436.0091.

4-Butyl-3-iodo-2-phenyl-5-(quinolin-2-yl)furan (4ag):

$77 \mathrm{mg}, 68 \%$ yield, Eluent, hexane $/ \mathrm{AcOEt}=50: 1$; Brown solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.21(\mathrm{~m}$, $2 \mathrm{H}), 7.39(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (ddd, $J=7.8,7.2,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.4,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.9$, $27.1,31.4,72.9,117.8,126.1,126.6,126.7,127.5,128.4,128.5,129.4,129.6,130.3,132.1,136.1,147.3,148.1$, $149.9,150.9$; IR (ATR): 3052, 2952, 2914, 2849, 1596, 1551, 1528, 1494, 1420, 1312, 1086, 954, 928, 825, 750, $681 \mathrm{~cm}^{-1} ;$ HRMS (FD+) $m / z:[\mathrm{M}]$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{20}$ INO 453.0590, Found 453.0589; mp. 87.0-90.0 ${ }^{\circ} \mathrm{C}$.

4-Butyl-5-(2-furyl)-3-iodo-2-phenylfuran (4ah):

$50 \mathrm{mg}, 50 \%$ yield, Eluent, hexane; Brown oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.45(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.61(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.71(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=3.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.48(\mathrm{dd}, J=2.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.6,26.1$, $31.8,70.7,106.2,111.3,126.1,126.4,128.1,128.3,130.2,141.3,142.0,146.2,150.0$; IR (ATR): 2956, 2926, 2863, 1668, 1598, 1528, 1462, 1376, 1168, 1009, 952, 729, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IO}_{2}$ 392.0273, Found 392.0273.

4-Butyl-3-iodo-5-(2-iodofur-5-yl)-2-phenylfuran (4ah'):
 8.03 (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,26.1,31.7,70.7,87.1,108.8,121.9,126.4$, $127.1,128.30,128.34,130.0,140.2,150.3,151.3$; IR (ATR): 2955, 2928, 2859, 1672, 1600, 1522, 1462, 1195, 1088, 1009, 956, 913, 762, $687 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{O}_{2} 517.9240$, Found 517.9239; mp. $49.0-52.0^{\circ} \mathrm{C}$.

4-Butyl-3-iodo-5-isobutyl-2-phenylfuran (4ai):

$29 \mathrm{mg}, 30 \%$ yield, Eluent, hexane; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.04$ (dsept,
$J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,22.6,25.7,28.2,32.3,35.6$, $68.6,124.5,126.0,127.5,128.2,130.9,149.1,150.6$; IR (ATR): 2955, 2928, 2871, 1603, 1465, 1384, 1235, 1089, 890, 761, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{IO}$ 382.0794, Found 382.0794.

4-Butyl-5-cyclohexyl-3-iodo-2-phenylfuran (4aj):

$68 \mathrm{mg}, 66 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.88(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{tt}, J=6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,25.6,25.9,26.4$, $31.8,32.6,36.6,68.9,122.3,125.9,127.4,128.2,130.9,148.6,155.1$; IR (ATR): 2927, 2853, 1601, 1447, 1378, 1256, 1093, 1069, 954, 760, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{IO} 408.0950$, Found 408.0951.

4-Butyl-5-(tert-butyl)-3-iodo-2-phenylfuran (4ak):

$23 \mathrm{mg}, 24 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.50(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{tt}, J=7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,23.0,26.7,29.7,33.2,34.3,71.0,122.2,126.0,127.5,128.2,130.9,148.0,156.3$; IR (ATR): 2958, 2925, 2868, 1484, 1363, 1236, 1089, 895, 762, $691 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{IO} 382.0794$, Found 382.0793.

5-(1-tert-Butoxycarbonylpyrrolidin-2-yl)-4-butyl-3-iodo-2-phenylfuran (4al):

$63 \mathrm{mg}, 51 \%$ yield, Eluent, hexane $/ \mathrm{AcOEt}=20: 1$; Colorless oil; Ratio of rotamers $=70: 30 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.28(\mathrm{~s}, 6.3 \mathrm{H}), 1.44(\mathrm{~s}$, $2.7 \mathrm{H}), 1.88-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.63(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.69(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}$, $0.70 \mathrm{H}), 5.03(\mathrm{~m}, 0.30 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.5,23.7,24.5,25.5,25.7,28.3,28.5,32.0,32.4,33.3,46.6,46.7,52.9,53.2$, $68.5,69.5,79.3,79.6,124.0,124.7,126.0,127.7,127.8,128.3,130.4,130.7,149.1,150.5,150.8,154.2 ;$ IR (ATR): 2957, 2925, 2869, 1692, 1477, 1442, 1392, 1251, 1161, 1108, 1072, 950, $689 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{INO}_{3}[\mathrm{M}]^{+}$495.1270, Found 495.1271.

4-Butyl-3-iodo-2-phenyl-5-(triisopropylsilylethynyl)furan (4am):

$89 \mathrm{mg}, 70 \%$ yield, Eluent, hexane/AcOEt $=50: 1$; Brown oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.19(\mathrm{~m}, 21 \mathrm{H}), 1.41(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{tt}, J=$ $7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.8$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.00(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.2,13.9,18.6,22.5,26.8,31.3,67.9$, $95.3,100.2,126.7,128.3,128.5,130.0,134.0,136.0,151.5$; IR (ATR): 2943, 2863, 2145, 1459, 1136, 1066, 957, 882, 763, 731, $688 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{35}$ IOSi 506.1502, Found 506.1502.

1,4-Bis(4-butyl-3-iodo-2-phenylfur-5-yl)benzene (4an):

$22 \mathrm{mg}, 30 \%$ yield, Eluent, hexane/AcOEt $=60: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.52(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 4 \mathrm{H})$, 2.69-2.74 (m, 4H), 7.36 (tt, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.76$ $(\mathrm{s}, 4 \mathrm{H}), 8.09(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.8,27.1,31.7,71.8,125.6,126.4$, 126.7, 128.2, 128.4, 129.7, 130.4, 147.6, 150.3; IR (ATR): 2955, 2925, 2858, 1671, 1591, 1492, 1259, 1105, 1034, 945, 833, 796, $692 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{O}_{2}$ 726.0492, Found 726.0491; mp. $150.0-153.0^{\circ} \mathrm{C}$.

1,4-Bis(4-butyl-3-iodo-5-phenylfur-2-yl)benzene (4na):

$26 \mathrm{mg}, 36 \%$ yield, Eluent, hexane/AcOEt $=60: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.50(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.62-1.68$ (m, 4H), 2.67-2.70 (m, 4H), 7.33 (tt, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.70(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.19(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,26.9,31.7,72.0,125.6$, $126.0,126.4,127.6,128.7,129.7,130.8,148.2,149.6$; IR (ATR): 3056, 2952, 2930, 2858, 1662, 1591, 1493, 1443, 1262, 1104, 1038, 942, 834, 799, $694 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{I}_{2} \mathrm{O}_{2}$ 726.0492, Found 726.0490; mp. 150.0-153.0 ${ }^{\circ} \mathrm{C}$.

1-Dimethoxyphosphoryloxy-1,2-diphenyl-3-octyn-2-ol (5aa):

The isolated amount is not available for this byproduct. This compound was finally isolated from the combined crude mixtures which were obtained during the optimized reaction conditions. Eluent, hexane/AcOEt $=1: 1$; Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer $\delta 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.2$ Hz, 2H), 2.80 (brs, 1H), $3.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}$, $8 \mathrm{H}), 7.54(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H})$; minor diastereomer $\delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.56(\mathrm{~m}$, $2 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major diastereomer $\delta 13.5,18.5,22.0,30.37,54.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 54.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 75.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 79.8$, $85.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 89.5,127.16,127.3,127.6,128.0,128.55,128.57,135.6,140.1$; minor diastereomer $\delta 13.5$, $18.5,21.9,30.40,54.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 54.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 76.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 78.8,86.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 89.5$, $126.9,127.19,127.7,128.0,128.1,128.4,135.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 140.2 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.3$ (major), 1.8 (minor); IR (ATR): 3384, 2958, 2929, 2866, 1496, 1449, 1258, 1181, 1040, 1014, 962, 882, 846, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P} 425.1488$, Found 425.1488.

3-Butyl-2,5-diphenyl-4-(phenylethynyl)furan (8):

$37 \mathrm{mg}, 99 \%$ yield, Eluent, hexane; Orange solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.51(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.85(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NRR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,22.8,24.6,31.8,82.3$, $96.1,106.9,123.6,124.8,125.3,125.6,127.3,127.9,128.2,128.5,128.6,128.7,130.5,131.1,131.3,147.4,152.7$;

IR (ATR): 3060, 2956, 2925, 2854, 2208, 1596, 1483, 1442, 1259, 1027, 911, 752, $686 \mathrm{~cm}^{-1} ;$ HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O} 376.1827$, Found 376.1827; mp. 55.0-58.0 ${ }^{\circ} \mathrm{C}$.

3-Butyl-2,4,5-triphenylfuran (9):

$\mathrm{Ph}{ }^{\mathrm{O}} \mathrm{Ph} 34 \mathrm{mg}, 97 \%$ yield, Eluent, hexane; Pale yellow solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.44(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.56(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{tt}, J=7.2,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{tt}, J=7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,22.6,23.8$, $32.0,124.3,125.3,125.5,125.8,126.87,126.91,127.4,128.2,128.6,128.8,130.2,131.0,131.7,134.1,147.1$, 147.4; IR (ATR): 3049, 2948, 2860, 1600, 1491, 1444, 1257, 1073, 1024, 952, 911, 764, $677 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O} 352.1827$, Found 352.1828; mp. 89.0-92.0 ${ }^{\circ} \mathrm{C}$.

3-Butyl-2,5-diphenyl-4-vinylfuran (10):

$\mathrm{Ph}{ }^{\mathrm{O}} \mathrm{Ph} 27 \mathrm{mg}, 89 \%$ yield, Eluent, hexane/AcOEt = 50:1; Pale yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 2 \mathrm{H}), 5.41$ $(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=18.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=18.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.41(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=7.8,1.2$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.9,24.1,32.1,117.4,121.7,122.8,125.8,126.5,127.0,127.4$, 128.4, 128.6 (2C), 131.3, 131.6, 148.1, 148.9; IR (ATR): 3056, 2952, 2954, 2871, 1672, 1599, 1493, 1446, 1382, 1239, 1094, 890, 764, $696 \mathrm{~cm}^{-1}$; HRMS (FD+) $\mathrm{m} / \mathrm{z}: ~[M]$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}$ 302.1671, Found 302.1671.

(E)-3-Butyl-4-(1-ethoxycarbonylethen-2-yl)-2,5-diphenylfuran (11):

$31 \mathrm{mg}, 82 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.71(\mathrm{~m}$, $2 \mathrm{H}), 2.77-2.81(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{tt}, J=7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J$ $=7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8,14.4,22.8,24.3,32.0,60.4$, $118.7,118.8,122.1,126.2,127.6$ (2C), 128.57, 128.64, 128.8, 130.3, 130.9, 136.5, 149.3, 153.6, 167.4; IR (ATR): 3053, 2956, 2932, 2867, 1710, 1632, 1490, 1444, 1276, 1178, 1032, 912, 763, $692 \mathrm{~cm}^{-1}$; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}[M]$ 374.1882, Found 374.1882.

(4-Butyl-2,5-diphenylfur-3-yl)(phenyl)methanol (12):

$35 \mathrm{mg}, 91 \%$ yield, Eluent, hexane/AcOEt $=10: 1$; Colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.49(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H})$, 2.33-2.40 (m, 1H), 2.51-2.57 (m, 1H), $6.24(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,23.0,24.3,31.8$, $67.8,123.3,124.5,125.5,125.9,127.0,127.2,128.0,128.2,128.56,128.58$ (2C), 130.7, 131.5, 142.4, 148.6, 150.0; IR (ATR): 3446, 3061, 2953, 2926, 2872, 1600, 1491, 1448, 1069, 1018, 910, 765, 733, $692 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z:[M]$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2}$ [M] 382.1933, Found 382.1933.

4-Butyl-3-((4-methoxyphenyl)carbonyl)-2,5-diphenylfuran (13):

$34 \mathrm{mg}, 83 \%$ yield, Eluent, hexane/AcOEt $=20: 1$; Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.66(\mathrm{~m}, 2 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ $(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J$ $=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,22.6,24.0,32.3,55.4,113.8$, $123.5,123.7,126.0,126.3,127.5,128.0,128.4,128.7,129.8,130.7,131.0,132.2,148.5,150.4,163.9,192.7$; IR (ATR): $3060,2958,2931,2869,1653,1598,1488,1314,1254,1171,1028,904,794,692 \mathrm{~cm}^{-1} ;$ HRMS (FD+) $\mathrm{m} / \mathrm{z}:$ [M] Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{3} 410.1882$, Found 410.1882.

3-Butyl-2-iodo-1,4-diphenyl-1,4-dihydro-1,4-epoxynaphthalene (15):

$22 \mathrm{mg}, 91 \%$ yield, Eluent, hexane/ $\mathrm{AcOEt}=30: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.74$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.94-1.07 (m, 2H), 1.09-1.18 (m, 2H), 2.24-2.37 (m, 2H), $7.04(\mathrm{dd}, J=4.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,22.2,28.5,30.0,92.9,94.1$, $111.3,120.0,120.5,125.0,125.2,126.5,127.9,128.0,128.2,128.4,128.5,134.5,134.9,149.8,150.0,161.8$; IR (ATR): 3065, 2955, 2928, 2864, 1605, 1452, 1304, 1002, 907, 742, $701 \mathrm{~cm}^{-1}$; HRMS (FD+) $m / z: ~[M]$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{IO} 478.0794$, Found 478.0794.

3-Butyl-2-iodo-1,4-diphenylnaphthalene (16):

61% NMR yield, 27 mg , abt. 95% purity, Eluent, hexane (analytically pure product was isolated after purification by recrystallization from hexane, $1.6 \mathrm{mg}, 3 \%$); White solid; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.79(\mathrm{~m}$, 2 H), 7.22 (ddd, $J=8.4,8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.46(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,22.8,32.4,39.7,107.5$, $125.6,126.0,126.6,127.3,127.5,127.6,128.3,128.4,130.0,130.1,131.6,132.8,138.4,139.7,140.0,145.4$, 145.5; IR (ATR): 3058, 2957, 2923, 2853, 1600, 1544, 1493, 1441, 1372, 1262, 1069, 1029, 909, 801, 752, 699 cm^{-1}; HRMS (FD+) m/z: [M] Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{I}$ 462.0844, Found 462.0844; mp. 161.0-164.0 ${ }^{\circ} \mathrm{C}$.

References

S1. Kondoh, A.; Iino, A.; Ishikawa, S.; Aoki, T.; Terada, M. Chem. Eur. J. 2018, 24, 15246-15253.
S2. Xing, Y. D.; Huang, N. Z. J. Org. Chem. 1982, 47, 140-142.

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]:
 $34 \mathrm{mg}, 31 \%$ yield, Eluent, hexane/AcOEt $=30: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.8,27.4,31.3,72.4,124.3,125.2,126.7$, $128.5,128.9,129.8,130.2,136.6,145.7,146.1,152.1$; IR (ATR): 3099, 3050, 1962, 2925, 2859, 1672, 1596, 1509,

