Supporting Information

Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure

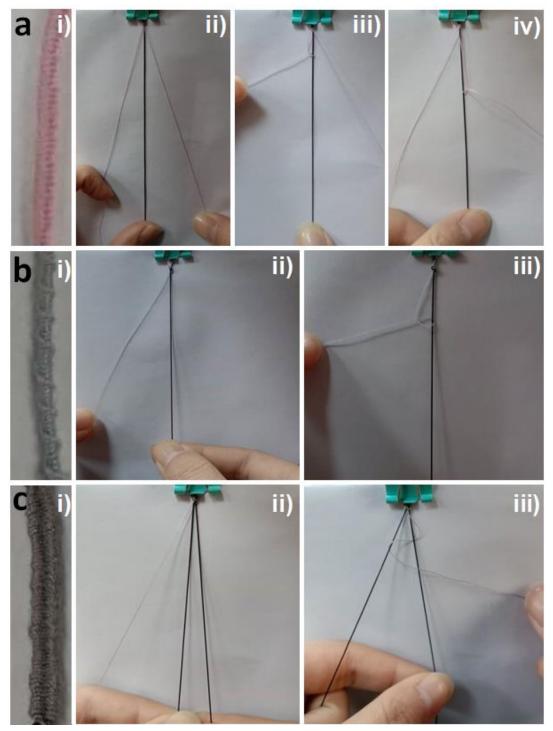
Zengyu Hui,[†] Ruyi Chen,[†] Jin Chang,[†] Yujiao Gong,[†] Xianwang Zhang,[§] Hai Xu,[†] Yue Sun,[†] Yue Zhao,[†] Lumin Wang,[†] Ruicong Zhou,[†] Feng Ju,[§] Qiang Chen,^I Jinyuan Zhou,[⊥] Jianing An,[¶] Gengzhi Sun, *[†][‡] and Wei Huang^{†‡}

[†]Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China

[‡]Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, P. R. China

[§]School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

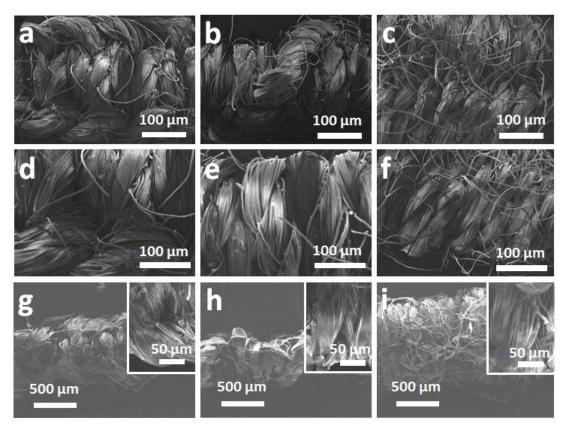
¹School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P. R. China

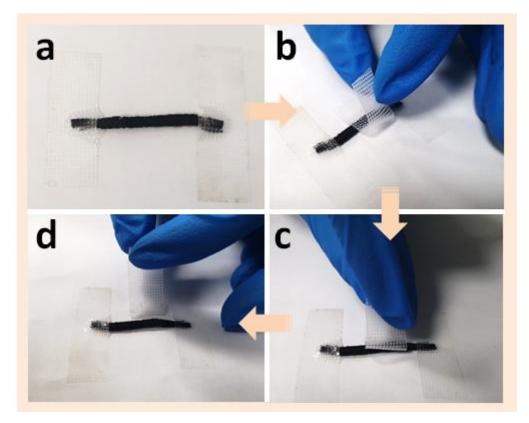

¹School of Physical Science and Technology, Lanzhou University, Lanzhou 730000,

P. R. China

[¶]School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

*Corresponding author. E-mail address: iamgzsun@njtech.edu.cn


S1


Figure S1. Twisting procedures for three predesigned models: a) Model 1, b) Model 2, and c) Model 3.

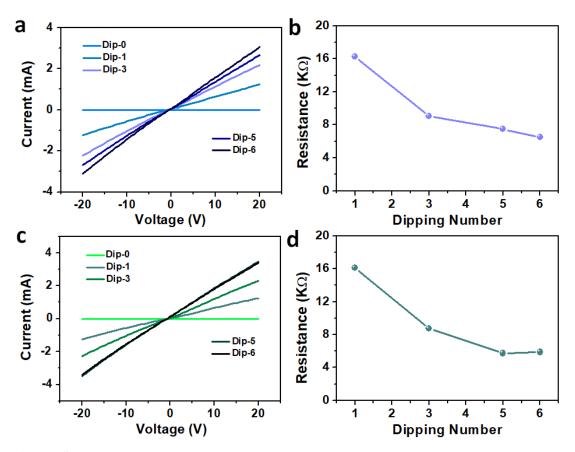

Figure S2. Photograph of as-prepared PPy without PVA.

Figure S3. SEM images of the textiles before and after dip-coating: a-c) SEM images of as-twisted textiles of M1, M2, M3, respectively; d-f) high-magnification SEM images of original textiles of M1, M2, M3; g-i) SEM images of M1, M2, M3 dip-coated by conductive ink. Insets correspond to high-magnification SEM images of PPT-M1, PPT-M2 and PPT-M3.

Figure S4. a-d) Demonstration of good adhesion between conductive sheath and core yarn by attaching onto and peeling off a adhesive tape.

Figure S5. a) Current-voltage curve of PPTS-M1 with varying dip-coating times (one to six). b) Resistance of PPTS-M1 with varying dip-coating times. c) Current-Voltage curve of PPTS-M2 with varying dip-coating times (one to six). d) Resistance of PPTS-M2 with varying dip-coating times.

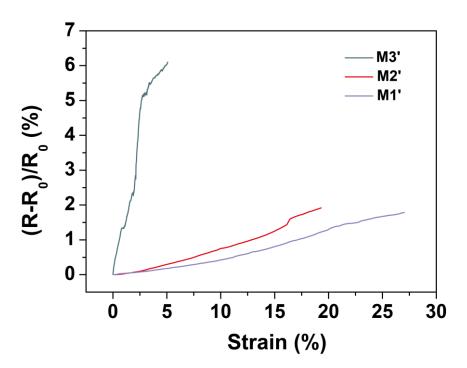


Figure S6. Resistance variation of three models without central elastomer during tension.

Figure S7. a-c) Linearity fit of resistance change for PPTS-M1, PPTS-M2 and PPTS-M3 during tension, respectively.

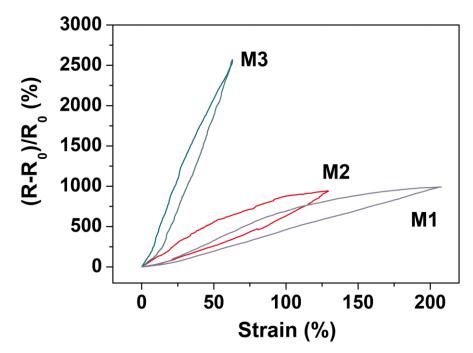


Figure S8. The hysteresis behavior of PPTS-M1, PPTS-M2 and PPTS-M3.

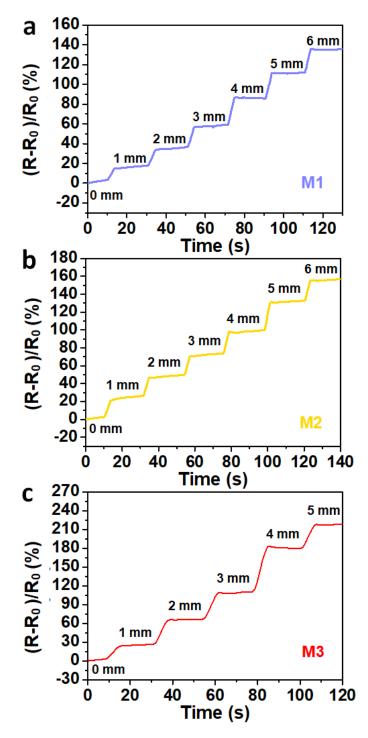
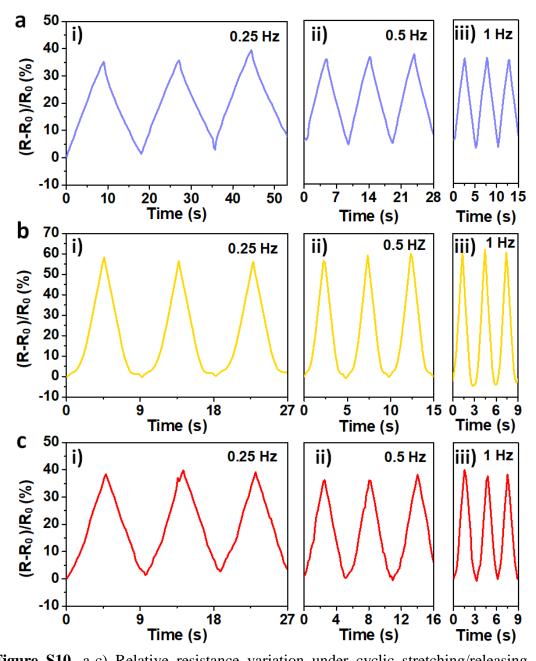



Figure S9. a-c) Relative resistance change of PPTS-M1, PPTS-M2 and PPTS-M3 at different strains.

Figure S10. a-c) Relative resistance variation under cyclic stretching/releasing at frequencies of 0.25, 0.5, and 1 Hz for PPTS-M1, PPTS-M2 and PPTS-M3, respectively.

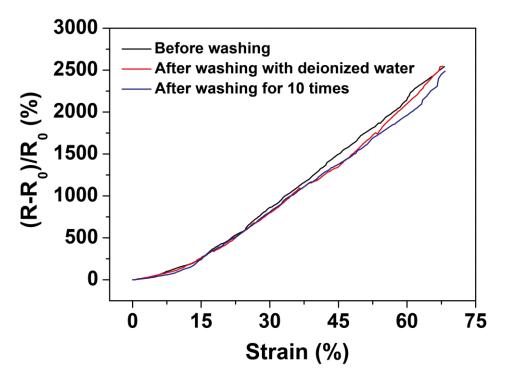


Figure S11. The performance of PPTS-3 before and after washing.

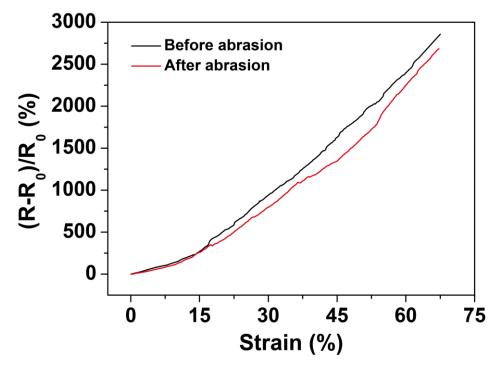


Figure S12. The performance of PPTS-3 before and after abrasion.

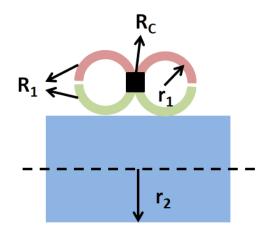


Figure S13. The longitudinal section of the structure.

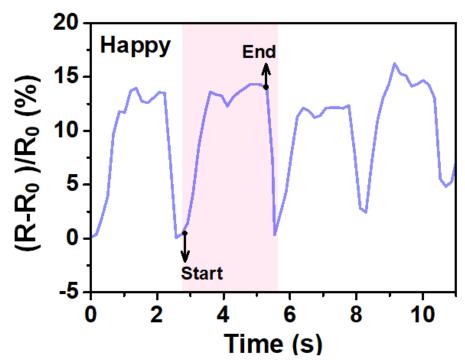
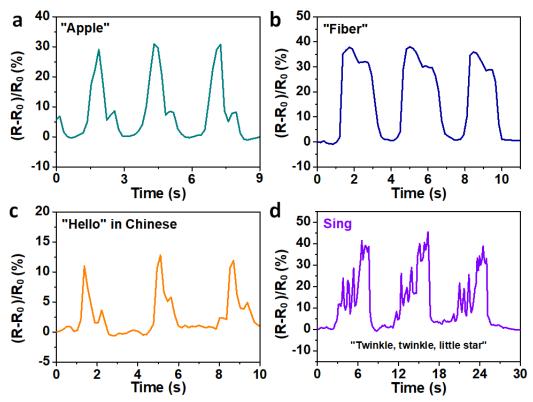



Figure S14. Application of PPTS-M3 for detecting the motion of mouth when the person is happy.

Figure S15. a-b) Applications of PPTS-M3 for vocal cords vibration when speaking "Apple" and "Fiber" in English, respectively. c) Signals when speaking "Hello" in Chinese. d) Signals when singing a song.

Strain sensors	Maximal workable strain range	Average gauge factor	Relationship in resistance under strain	Sign of gradient	Ref.
PPy-coated fabrics (Lycra)	60 %	~-3.5 (at 20 % strain) ~-0.7 (at 60 % strain)	None-linear	Negative	1
Graphene based on yarns (NCRY)	150%	1.4	Linear	Positive	2
Graphene based fiber with "compression spring" Structure	100%	10 (1% Strain) 3.7 (50% Strain)	None-linear	Positive	3
Graphene textile without polymer encapsulation	8%	-26	None-linear	Negative	4
Carbonized plain-weave silk fabric with Ecoflex encapsulated	500%	5.8 (under 1% strain) 9.6 (within 250% strain) 37.5 (250%-500% strain)	3 linear regions	Positive	5
Graphene– Nanocellulose Nanopaper	100%	1.6 (10% strain) 7.1 (100% strain)	Exponential	Positive	6
Carbon nanotube film on PDMS	280%	0.82 (40% strain) 0.06 (60-200% strain)	2 linear regions	Positive	7
Carbon black thermal plastic elastomer composite	80%	20	None-linear	Positive	8
Silver nanoparticles	20%	2.05	Linear	Positive	9
Laser-scribed graphene	10%	9.49	Linear	Positive	10
	200%	3.8			M1
PPTSs	125%	5.9	Linear	Positive	M2
	65%	38.9			M3

 Table S1. Performance comparison between our sensors and those reported in literatures.

References

- (1). J. Wu, D. Zhou, C. O. Too and G. G. Wallace, Synth. Met. 2005, 155, 698-701.
- (2). J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, *ACS Appl. Mater. Interfaces* **2015**, *7*, 6317–6324.
- (3). Y. Cheng, R. Wang, J. Sun, L. Gao. Adv. Mater. 2015, 27, 7365.
- (4). Z. Yang, Y. Pang, X. L. Han, Y. F. Yang, J. Ling, M. Q. Jian, Y. Y. Zhang, Y. Yang, T. L. Ren, *ACS Nano* **2018**, *12*, 9134-9141.
- (5). C. Y. Wang, X. Li, E. L. Gao, M. Q. Jian, K. L. Xia, Q. Wang, Z. P. Xu, T. L. Ren, and Y. Y. Zhang, *Adv. Mater.* **2016**, *28*, 6640–6648.
- (6). C. Yan; J. Wang; W. Kang; M. Cui; X. Wang; C. Y. Foo; K. J. Chee; P. S. Lee; *Adv. Mater.* **2014**, *26*, 2022-2027.
- (7). T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, *Nat. Nanotech.* 2011, *6*, 296-301.
- (8). C. Mattmann, F. Clemens, G. Tröster, Sensors 2008, 8, 3719-3732.
- (9). M. Hempel; D. Nezich; J. Kong; M. Hofmann; Nano Lett. 2012, 12, 5714–5718.
- (10). H. Tian; Y. Shu; Y. L. Cui; W. T. Mi; Y. Yang; D. Xie; T. L. Ren; *Nanoscale* **2014**, *6*, 699–705.