SUPPORTING INFORMATION

AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors

Vaishnavi J. Rao,^{†,‡} Maik Matthiesen,^{†,‡} Katelyn P. Goetz,^{†,‡} Christian Huck,^{‡,§} Chanyoung

Yim,[∥] Rita Siris,[∥] Jie Han,[⊥] Sebastian Hahn,[#] Uwe H. F. Bunz,[#] Andreas Dreuw,[⊥] Georg S.

Duesberg,[∥] Annemarie Pucci,^{‡,§} Jana Zaumseil^{*,†,‡}

[†]Institute of Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.

[‡]Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany.

[§]Kirchhoff-Institute of Physics, Universität Heidelberg, D-69120 Heidelberg, Germany.

Institute of Physics, EIT 2, Universität der Bundeswehr München, 85577 Neubiberg, Germany.

[⊥]Interdisciplinary Center for Scientific Computing, Universität Heidelberg, D-69120 Heidelberg, Germany.

[#]Institute of Organic Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.

Corresponding Author: * zaumseil@uni-heidelberg.de

Table of Contents

Optical micrographs of single crystals
Calculated IR spectra
IR-SNOM near-field amplitude spectra
Table of IR modes of TIPS-PEN single crystal S4
Table of IR modes of TIPS-TAP single crystal S6
Table of IR modes of Rubrene single crystal
Table of IR modes of PDIF-CN ₂ single crystal
FT-IR absorbance spectrum of spin-coated PDIF-CN ₂ film
Single Spot AFM-IR spectra of PDIF-CN ₂ crystallites
Overlay of topography and amplitude images from AFM-IR
Single Spot IR-SNOM spectra of PDIF-CN ₂ crystallites
IR-SNOM imaging of PDIF-CN ₂ film at 1084 cm ⁻¹

Optical micrographs of single crystals

Figure S1. Optical micrographs of single crystals of (a) TIPS-PEN, (b) TIPS-TAP grown by the drop-casting method, (c) Rubrene and (d) PDIF-CN₂, grown via physical vapor transport method. Also indicated are the angles that correspond to the orientation of the in-plane electric field with respect to the long axis of the crystal.

Calculated IR spectra

Figure S2. Calculated IR spectra of (a) TIPS-PEN, (b) TIPS-TAP, (c) Rubrene and (d) PDIF-CN₂. All spectra were broadened using Lorentzian functions with a full-width at half maximum of 4 cm⁻¹. No energy scaling or frequency correction was applied.

IR-SNOM near-field amplitude spectra

Figure S3. Second demodulation order of the near-field amplitude of (a) TIPS-PEN, (b) TIPS-TAP, (c) Rubrene and (d) PDIF-CN₂ single crystals.

Table of IR modes of TIPS-PEN single crystal

Table S1. Peak positions in cm⁻¹ for all the modes observed for a TIPS-PEN crystal at different polarizations with the three techniques. DFT positions (in cm⁻¹) that were calculated for a single molecule of TIPS-PEN in the gas phase are also included. The intensity of the peaks is indicated with bold font – strong, regular font – medium, in brackets – weak. 'x' indicates that there exists a peak but is not well-resolved; '-' indicates that the corresponding peak is absent.

TIPS-PEN	FT-IR	AFM-IR	IR-SNOM	DFT
0°	991 1008/1015 (1063)/(1076) 1139 1176 - (1366)/1379 1461 (1478) 1528 (1548)	(992) x/x x/x (1138) 1176 1262 1370/1376 1460 x 1530 1546	992 1014 1069 1137 	908 933 1035 1111 (1147) 1295 (1341) 1422 (1430) 1516 (1550)
45°	992 1008/(1014) (1061)/1075 (1138) - - 1366 1463 - (1528) -	(994) x/x x/x (1138) - 1262 1370- 1460 x -		
90°	992 1008/1015 (1061)/1075 (1138) (1176) - 1366 1463 - (1528) (1547)	(992) x-x x-x (1138) (1176) 1262 1370/(1380) 1460 x 1530 (1546)		

$.35^{\circ} \begin{array}{c cccc} 991 & (992) \\ 1015 & x/x \\ (1061)/1077) & x/x \\ 1138 & (1138) \\ 1176 & (1176) \\ & & 1262 \\ 1379 & 1370/1380 \\ 1461 & 1460 \\ (1478) & x \\ 1528 & 1530 \\ (1548) & (1546) \end{array}$
--

Table of IR modes of TIPS-TAP single crystal

Table S2. Peak positions in cm⁻¹ of all modes observed for a TIPS-TAP crystal at different polarizations with the three techniques. DFT positions (in cm⁻¹) that were calculated for a single molecule of TIPS-TAP in the gas phase are also included. The intensity of the peaks is indicated with bold font – strong, regular font – medium, in brackets – weak. 'x' indicates that there exists a peak but is not well-resolved; '-' indicates that the corresponding peak is absent.

TIPS-TAP	FT-IR	AFM-IR	IR-SNOM	DFT
0°	(994) (1017)/ 1032 (1067) 1114 (1136) 1179 - 1315 (1384) 1432 1460 1527	(994) 1022/x (1068) 1114 1134 1178 1228 1314 1384 1432 1460 1526	992 1022/- (1052)/(1079) 1112 1134 1179 1227 1310 1385 1432 1462 1525	910 1031/ 1053 1074 1108 1117 1172 (1288) 1360 1417 1434 1438 1522
45°	(994) (1023)/(1032) - (1114) (1136) - - - (1386) (1432) 1464 (1527)	(990) 1020/x - (1134) - 1228 - 1384 - 1460 (1526)		

	(994) (1022)/1032	(992) 1020/x
90°	1114	- (1136)
	(1179)	(1130) (1178) (1228)
	(1315) (1385) 1432	1314 1384 (1432)
	1464 1527	1460 1526
	(994) (1016)/ 1032 (1067)	(994) 1016/x (1068)
135°	1114 - 1179	(1114) 1134 1178
	1315 (1383)	1228 1314 1382
	1432 1461 1527	1432 1460 1530

Table of IR modes of rubrene single crystal

Table S3. Peak positions in cm⁻¹ for all the modes observed for a rubrene crystal at different polarizations with the three techniques. DFT positions (in cm⁻¹) that were calculated for a single molecule of rubrene in the gas phase are also included. The intensity of the peaks is indicated with bold font – strong, regular font – medium, in brackets – weak. 'x' indicates that there exists a peak but is not well-resolved; '-' indicates that the corresponding peak is absent.

rubrene	FT-IR	AFM-IR	IR-SNOM	DFT
0°	(967) 1031 (1069) - (1216) 1309 (1393) - 1440 1465 (1494) -	(968) 1028 (1070) (1110) - (1216) (1308) 1394 - 1440 1464 - (1572)	962 1027 1070 (1109) - - 1392 1417 1442 1467 1492 1571	(982) 1053 1105 (1157) (1198) (1212) (1249) (1338) 1397 1424 1481 1512 1537 (1580)
45°	968 1031 (1069) (1149) (1171) (1216) 1309 (1393) (1413) 1441 1465 (1494) (1574)	968 1028 1068 (1110) (1148) (1170) - (1308) 1394 (1412) 1440 1464 - 1574		

	968	968
	1030	1028
	1068	1068
	-	(1110)
	1149	(1148)
	1171	(1170)
000	_	-
90°	(1308)	(1308)
	(1393)	1394
	(1413)	(1412)
	1441	1440
	1465	1464
	-	-
	1575	1574
	1070	1071
	968	968
	968 1031	968 1028
	968 1031 1069	968 1028 (1068)
	968 1031 1069	968 1028 (1068) (1110)
	968 1031 1069 - (1149)	968 1028 (1068) (1110) (1148)
	968 1031 1069 - (1149) (1170)	968 1028 (1068) (1110) (1148) (1170)
1250	968 1031 1069 - (1149) (1170) (1216)	968 1028 (1068) (1110) (1148) (1170)
135°	968 1031 1069 - (1149) (1170) (1216) 1309	968 1028 (1068) (1110) (1148) (1170) - (1308)
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393)	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393) (1413)	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394 (1412)
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393) (1413) 1441	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394 (1412) 1440
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393) (1413) 1441 1465	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394 (1412) 1440 1464
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393) (1413) 1441 1465 (1494)	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394 (1412) 1440 1464 -
135°	968 1031 1069 - (1149) (1170) (1216) 1309 (1393) (1413) 1441 1465 (1494) (1574)	968 1028 (1068) (1110) (1148) (1170) - (1308) 1394 (1412) 1440 1464 - (1572)

Table of IR modes of PDIF-CN₂ single crystal

Table S4. Peak positions in cm⁻¹ for all the modes observed for PDIF-CN₂ crystal at different polarizations with the three techniques. DFT positions (in cm⁻¹) that were calculated for a single molecule of PDIF-CN₂ in the gas phase are also included. The intensity of the peaks is indicated with bold font – strong, regular font – medium, in brackets – weak. 'x' indicates that there exists a peak but is not well-resolved; '-' indicates that the corresponding peak is absent.

PDIF-CN ₂	FT-IR	AFM-IR	IR-SNOM	DFT
0°	(1059) 1114 /(1124) - 1221 /1247 (1352)/1362 (1411)/(1427)	1040/1056 1114/1124 1194 1248 1350/1360 1412/1426	(1039)/(1056) 1123 1196 1244 1356 1421	(1056)/1068 1119/1128 (1183) 1214/1220 1339/1354 (1419)/1437
45°	(1059) 1114 / (1124) - 1221/1247 1352/1362 (1411)/(1427)	1040/1058 1114/1122 (1194) 1248 1352/1360 1410/1426		
90°	(1059) 1124 - (1221)/ 1247 1351 (1413)/(1427)	1040/1056 1112/1124 1194 1246 1350/1358 1412/1426		
135°	(1058) 1114 /1124 1221/1247 1351/1362 1413/1427	1042/1056 1112/1124 (1194) 1248 1350/1360 1412/1426		

FT-IR absorbance spectrum of spin-coated PDIF-CN₂ film

Figure S4. FT-IR absorbance spectrum of a spin-coated, polycrystalline film of PDIF-CN₂. Asterisks indicate those peaks which showed a noticeable difference in the AFM-IR and IR-SNOM spectra from the center and the edge.

Single Spot AFM-IR spectra of PDIF-CN₂ crystallites

Figure S5. Topography image of spin-coated PDIF- CN_2 film with blue (center) and red (edge) dots indicating the spots where full AFM-IR spectra (blue and red lines, respectively) were recorded.

Overlay of topography and amplitude images from AFM-IR

Figure S6. Topography (red) and amplitude (green) images of spin-coated PDIF-CN₂ film mapped at 1234 cm⁻¹ with the AFM-IR, and the corresponding overlay. The overlay image shows that there is material at the edges of the crystallites where the amplitude image shows little to no signal.

Single Spot IR-SNOM spectra of PDIF-CN₂ crystallites

Figure S7. Topography image of spin-coated PDIF- CN_2 film with blue (center) and red (edge) dots indicating the spots where full IR-SNOM spectra (blue and red lines, respectively) were recorded.

IR-SNOM imaging of PDIF-CN₂ film at 1084 cm⁻¹

Figure S8. Topography (a), near-field amplitude (b) and near-field phase (c) images of spin-coated PDIF-CN₂ film mapped at 1084 cm⁻¹.