Supporting information

Fe-Catalyzed Domino Intramolecular Nucleophilic Substitution of 4– hydroxy Chromen–2–one and Pyran–2–one/ Ring–opening of Activated Arene: An Easy Access to 2,3–Disubstituted Furo[3,2,–*c*]coumarins and Furo[3,2,–*c*]pyran–4–ones via Non–symmetric Triarylmethanes

Wayland E. Noland*, Honnaiah Vijay Kumar, Arjun Sharma, Binyuan Wei and Selamawit Girmachew

Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455. Email-nolan001@umn.edu

Table of Contents

I.	General experimental information
II.	General procedure for the synthesis of $furo[3,2,-c]$ coumarins 13 a-n
III.	¹ H and ¹³ C NMR spectra for furo[3,2, $-c$]coumarins 13 a-n S13-S40
IV.	Plausible mechanism for Fe-catalyzed domino reaction
V.	General procedure for the synthesis of non–symmetric triarylmethanes 14 a-n S42-S50
VI.	¹ H and ¹³ C NMR spectra for non–symmetric triarylmethanes 14 a-n
VII.	Optimization of reaction conditions for the synthesis of $furo[3,2-c]$ pyran-4-ones 19 a-
	j
VIII.	General procedure for the synthesis of furo $[3,2,-c]$ pyran-4-ones 19 a-j
IX.	¹ H and ¹³ C NMR spectra for furo[3,2, $-c$]pyran-4-ones 19 a-j
X.	Procedure for the synthesis of Phenprocoumon analogue 23 S107
XI.	¹ H and ¹³ C NMR spectra for Phenprocoumon analogue 23 S108-S109
XII.	Optimization of reaction conditions for the synthesis of benzofurans 25 a-
	f
XIII.	General procedure for the synthesis of benzofurans 25 a-f
XIV.	¹ H and ¹³ C NMR Spectra for benzofurans 25 a-f
XV.	Procedure for gram scale reactions 13a, 14a, 19a and 25aS128-S130
XVI.	Single crystal X-ray diffraction of compound 13d

I. General experimental information

Solvents like anhydrous toluene, anhydrous THF, 200 proof ethanol, DCM, ethyl acetate, hexanes and reagents like alkyl–, aryl–aldehydes, 4–hydroxycoumarin, coumarin, 2–methylfuran, 4– hydroxy–6–methyl–2–pyrone, anhydrous MgSO₄, 1,3,5 trimethoxybenzene, Fe₂(SO₄)₃•xH₂O were purchased and used without further purification. Melting points were recorded on a Mel-Temp and are uncorrected (Sigma Aldrich Co., St. Louis, MO). Flash chromatography was performed using 150-Å silica gel. Thin-layer chromatography analyses were performed on plasticbacked plates pre-coated with 0.2-mm of silica with F254 indicator. Thin-layer chromatography developing solvents were mixtures of ethyl acetate and hexane. Chemical shifts (δ, ppm) for NMR spectra were referenced to the solvent (CDCl₃ at 7.26, CD₂Cl₂ at 5.32, for ¹H; CDCl₃ at 77.16, CD₂Cl₂ at 53.84 for ¹³C). ¹³C NMR spectra were proton decoupled. Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 7200 FT-IR spectrophotometer. High-resolution mass spectra were recorded on a Bruker BioTOF II ESITOF instrument with poly (ethylene oxide) as an internal calibrant, or a Finnegan Mat 95 EI spectrophotometer or an Agilent 7200 GC/QTOF spectrophotometer with perfluorokerosene as an internal calibrant.

II. General procedure for the synthesis of furo[3,2,-c] coumarins

A 50 mL round bottom flask was charged with aldehydes (1 mmol, 1 equiv), 2–methyl furan (1 mmol, 1 equiv) and 4– hydroxycoumarin (1 mmol, 1 equiv) in anhydrous toluene (10 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O$ (15 mol%, 60 mg) was added and the solution was stirred at reflux temperature for 6 h in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (15 mL), washed with distilled water (3 × 15 mL) and dried over anhydrous MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate).

The general method from above was used for the preparation of following furo[3,2,-c]*coumarins:*

2-(3-oxobutyl)-3-phenyl-4H-furo[3,2-c]chromen-4-one 13a

White solid, 288.3 mg, 87% yield, m.p. 124-126 °C; $R_f = 0.34$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 1739, 1632, 1502, 737, 703; ¹H NMR (400 MHz, Methylene Chloride- d_2) δ 7.90 (dd, J = 7.8, 1.7 Hz, 1H), 7.57 – 7.35 (m, 8H), 3.13 – 3.07 (m, 2H), 2.92 (dd, J = 8.2, 6.7 Hz, 2H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Methylene Chloride- d_2) δ 206.5, 157.9, 156.8, 154.5, 152.8, 130.8, 130.4, 128.6, 128.3, 124.8, 121.0, 120.9, 117.4, 113.2, 110.1, 41.5, 30.0, 21.1; HRMS (EI-TOF) m/z: [M]⁺Calcd for C₂₁H₁₆O4 332.1043; Found: 332.1037.

2-(3-oxobutyl)-3-(p-tolyl)-4H-furo[3,2-c]chromen-4-one 13b

Brown solid, 270.1 mg, 78% yield, m.p. 123-125 °C; $R_f = 0.38$ (EtOAc:Hexanes = 1:3, SiO₂); flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 2920, 1744, 1630, 1515, 826, 754; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, J = 7.9 Hz, 1H), 7.52 – 7.27 (m, 7H), 3.13 (t, J = 7.6 Hz, 2H), 2.90 (t, J = 7.6 Hz, 2H), 2.40 (s, 3H), 2.19 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.5, 157.8, 156.5, 153.6, 152.6, 138.0, 130.5, 129.8, 129.2, 126.7, 124.4, 121.0, 120.7, 117.3, 112.9, 110.0, 41.6, 30.0, 21.5, 20.9; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₂H₁₈O₄ 346.1200; Found: 346.1208.

3-(4-methoxyphenyl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13c

Brown solid, 304.2 mg, 84% yield, m.p. 110-112 °C; $R_f = 0.41$ (EtOAc:Hexanes = 1:3, SiO₂; Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:12, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 1737, 1632, 1515, 742, 704; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.43 (dd, J = 8.9, 2.3 Hz, 3H), 7.34 (td, J = 7.6, 1.2 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H), 3.13 (dd, J = 8.3, 6.8 Hz, 2H), 2.90 (t, J = 7.6 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.5, 159.5, 157.9, 156.5, 153.4, 152.5, 131.2,

130.5, 124.4, 121.9, 120.7, 117.3, 114.0, 112.9, 110.0, 55.4, 41.5, 30.0, 20.9; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₂H₁₈O₅ 362.1149; Found: 362.1149.

3-(4-nitrophenyl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13d

Yellow solid, 300.4 mg, 80% yield, m.p. 121-122 °C; $R_f = 0.33$ (EtOAc:Hexanes = 1:3, SiO₂); flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 1716, 1630, 1600, 736, 703; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 – 8.27 (m, 2H), 7.86 (dd, J = 7.8, 1.6 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.54 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.45 – 7.34 (m, 2H), 3.13 (t, J = 7.4 Hz, 2H), 2.98 (t, J = 7.2 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.1, 157.6, 157.1, 154.8, 152.6, 147.4, 136.8, 131.1, 131.0, 124.7, 123.6, 120.8, 119.2, 117.3, 112.4, 109.3, 40.9, 30.0, 20.8.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₁₅NO₆ 377.0849; Found: 377.0849.

3-(2-bromophenyl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13e

Brown oil, 311.8 mg, 76% yield; $R_f = 0.32$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 1741, 1634, 1502, 738, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (dd, J = 7.8, 1.6 Hz, 1H), 7.69 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.44 – 7.27 (m, 5H), 2.97 (td, J =

7.4, 1.6 Hz, 2H), 2.90 – 2.82 (m, 2H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.4, 157.3, 156.3, 154.5, 152.6, 133.0, 132.1, 131.3, 130.6, 130.2, 127.5, 124.9, 124.5, 120.8, 119.8, 117.4, 112.9, 110.9, 41.0, 29.9, 21.0; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₁₅BrO₄ 410.0154; Found: 410.0148.

3-(4-fluorophenyl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13f

Brown solid, 269.4 mg, 77% yield, m.p. 128-129°C; $R_f = 0.45$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:15, SiO₂); IR (film) v_{max}/cm^{-1} 3056, 2986, 1736, 1633, 739, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.55 – 7.42 (m, 4H), 7.35 (td, J = 7.5, 1.2 Hz, 1H), 7.15 (t, J = 8.7 Hz, 2H), 3.11 (dd, J = 8.2, 6.7 Hz, 2H), 2.92 (dd, J = 8.1, 6.7 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.3, 164.0, 161.5, 157.8, 156.6, 153.8, 152.6, 131.8, 131.8, 130.7, 125.7, 124.5, 120.8, 120.1, 117.4, 115.7, 115.5, 112.8, 109.8, 41.4, 30.0, 20.8; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₁₅FO₄ 350.0949; Found: 350.0940.

3-ethyl-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13g

White solid, 235.8 mg, 83% yield, m.p. 98-100°C; $R_f = 0.36$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3408, 3057, 2967, 2875, 1733, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, J = 7.8, 1.6 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.30 (td, J = 7.5, 1.2 Hz, 1H), 3.02 (dd, J = 7.8, 6.6 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H), 2.71 (q, J = 7.5 Hz, 2H), 2.21 (s, 3H), 1.24 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.6, 158.5, 156.3, 152.6, 152.5, 130.2, 124.4, 121.4, 120.6, 117.3, 113.1, 110.9, 41.8, 30.1, 20.2, 17.0, 15.3; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₇H₁₆O₄ 284.1043; Found: 284.1044.

2-(3-oxobutyl)-3-propyl-4H-furo[3,2-c]chromen-4-one 13h

Yellow solid, 244.4 mg, 82% yield, m.p. 78-79°C; $R_f = 0.35$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3420, 3058, 2962, 2932, 1740, 737; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (dd, J = 7.8, 1.6 Hz, 1H), 7.46 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.40 (dd, J = 8.4, 1.3 Hz, 1H), 7.30 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 3.06 – 2.99 (m, 2H), 2.92 – 2.85 (m, 2H), 2.71 – 2.63 (m, 2H), 2.22 (s, 3H), 1.72 – 1.64 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.7, 158.5, 156.3, 153.2, 152.5, 130.2, 124.4, 120.6, 119.6, 117.3, 113.1, 111.0, 41.8, 30.1, 25.4, 23.5, 20.3, 13.9.; HRMS (EI-TOF) m/z: [M]⁺Calcd for C₁₈H₁₈O₄ 298.1200; Found: 298.1200.

3-butyl-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13i

White solid, 271.5 mg, 87% yield, m.p. 99-100°C; $R_f = 0.41$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:15, SiO₂); IR (film) v_{max}/cm^{-1} 3057, 2958, 2861, 1740, 1266, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, J = 7.8, 1.6 Hz, 1H), 7.44 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 7.38 (dd, J = 8.4, 1.3 Hz, 1H), 7.31 – 7.27 (m, 1H), 3.00 (td, J = 7.1, 6.5, 0.9 Hz, 2H), 2.91 – 2.85 (m, 2H), 2.71 – 2.65 (m, 2H), 2.21 (s, 3H), 1.60 (tt, J = 9.0, 6.8 Hz, 2H), 1.36 (dq, J = 14.7, 7.3 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.7, 158.4, 156.2, 153.0, 152.5, 130.1, 124.3, 120.5, 119.8, 117.2, 113.1, 111.0, 41.8, 32.5, 30.1, 23.2, 22.5, 20.2, 14.0; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₉H₂₀O₄ 312.1356; Found: 312.1349.

3-isopropyl-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13j

White solid, 250.4 mg, 84% yield, m.p. 123-126°C; $R_f = 0.37$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3424, 3019, 2929, 2853, 1738, 748; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, J = 7.8, 1.6 Hz, 1H), 7.46 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.39 (dd, J = 8.3, 1.2 Hz, 1H), 7.29 (ddd, J = 8.3, 7.2, 1.3 Hz,

1H), 3.18 (hept, J = 7.0 Hz, 1H), 3.09 – 3.03 (m, 2H), 2.87 (dd, J = 8.1, 6.7 Hz, 2H), 2.21 (s, 3H),
1.38 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.6, 158.2, 156.8, 152.6, 151.7,
130.2, 125.7, 124.3, 120.6, 117.1, 112.9, 110.5, 42.1, 30.1, 24.9, 22.1, 20.8; HRMS (EI-TOF) *m/z*:
[M]⁺Calcd for C₁₈H₁₈O₄ 298.1200; Found: 298.1210.

3-cyclohexyl-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13k

Yellow solid, 229.2 mg, 68% yield, m.p. 127-128°C; $R_f = 0.40$ (EtOAc:Hexanes = 1:3, SiO₂); Flash Column Chromatography Eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3681, 3018, 2924, 1730, 1216, 745; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (dd, J = 7.9, 1.5 Hz, 1H), 7.46 (td, J = 7.8, 7.2, 1.6 Hz, 1H), 7.40 (d, J = 8.3 Hz, 1H), 7.31 – 7.27 (m, 1H), 3.07 (dd, J = 8.2, 6.8 Hz, 2H), 2.88 (t, J = 7.5 Hz, 2H), 2.80 (tt, J = 12.3, 3.6 Hz, 1H), 2.22 (s, 3H), 1.96 (td, J = 12.2, 3.7 Hz, 2H), 1.84 (q, J = 5.1, 4.3 Hz, 2H), 1.77 – 1.63 (m, 3H), 1.39 (td, J = 9.1, 2.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.8, 158.2, 156.7, 152.5, 152.0, 130.2, 124.9, 124.3, 120.6, 117.1, 113.0, 110.6, 42.2, 35.1, 31.9, 30.1, 26.9, 25.8, 21.0.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₂₂O₄ 338.1513; Found: 338.1518.

3-(naphthalen-1-yl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 131

Brown oil, 301.8 mg, 79% yield; $R_f = 0.38$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2985, 1741, 1508, 1266, 702; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (t, J = 7.4 Hz, 3H), 7.65 (d, J = 8.4 Hz, 1H), 7.58 – 7.47 (m, 4H), 7.45 – 7.36 (m, 3H), 2.94 (tt, J = 15.6, 7.4 Hz, 2H), 2.77 (qdd, J = 17.9, 8.4, 6.4 Hz, 2H), 2.06 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.4, 157.4, 156.6, 154.9, 152.7, 133.8, 132.5, 130.6, 129.2, 128.7, 128.5, 127.5, 126.5, 126.1, 125.4, 124.5, 120.8, 118.7, 117.4, 113.0, 111.6, 41.3, 29.8, 21.0.; HRMS (EI-TOF) m/z: [M]⁺Calcd for C₂₅H₁₈O₄ 382.1200; Found: 382.1198.

3-(5-methylthiophen-2-yl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13m

Brown solid, 249.7 mg, 71% yield. m.p. 119-120°C; $R_f = 0.24$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:8, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2985, 2923, 1735, 1265, 703; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.43 (dd, J = 8.4, 1.2 Hz, 1H), 7.36 – 7.30 (m, 2H), 6.79 (dt, J = 3.6, 1.2 Hz, 1H), 3.26 (dd, J = 8.4, 6.8 Hz, 2H), 2.93 (dd, J = 8.5, 6.8 Hz, 2H), 2.53 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.4, 157.6, 156.6, 153.9, 152.6, 141.0, 130.8, 129.5, 127.4, 125.9, 124.5, 120.8, 117.3, 115.0, 112.7, 109.7, 41.6, 30.0, 21.5, 15.4.; HRMS (EITOF) *m/z*: [M]⁺Calcd for C₂₀H₁₆O₄S 352.0764; Found: 352.0761.

3-(benzo[d][1,3]dioxol-5-yl)-2-(3-oxobutyl)-4H-furo[3,2-c]chromen-4-one 13n

Brown solid, 308.4 mg, 82% yield. m.p. 93-95°C; $R_f = 0.18$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:8, SiO₂); IR (film) v_{max}/cm^{-1} 3413, 3058, 2987, 2901, 1732, 613; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.50 (td, J = 7.8, 7.2, 1.6 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.37 – 7.32 (m, 1H), 6.98 (d, J = 1.7 Hz, 1H), 6.95 – 6.88 (m, 2H), 6.01 (s, 2H), 3.11 (t, J = 7.6 Hz, 2H), 2.90 (t, J = 7.5 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.4, 157.8, 156.5, 153.7, 152.6, 147.7, 147.7, 130.6, 124.5, 123.6, 123.3, 120.8, 120.7, 117.3, 112.9, 110.6, 109.9, 108.4, 101.4, 41.5, 30.0, 20.8.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₂H₁₆O₆ 376.0941; Found: 376.0930.

III. ¹H and ¹³C NMR Spectra for Furo[3,2,-*c*]coumarins 13 a-n

10.0

IV. Plausible mechanism for Fe-catalyzed domino reaction

Scheme S1. Plausible mechanism for Fe–catalyzed domino intramolecular nucleophilic substitution of 4–hydroxy chromen–2–one/ ring–opening of activated arene

During the course of these reactions we observed that the initial yellow color of the suspension changed to dark red, providing a clue to the mechanistic pathway of this reaction. A plausible reaction mechanism for the Fe–catalyzed domino process is shown (Scheme S1). In the first step, coordination of the carbonyl *O*–atom with a Fe–atom results in a color change. Concurrently, a nucleophilic attack by the activated arene, 2–methylfuran–3–*C* atom at the carbonyl–*C* atom takes place. In the second step, elimination of ferric sulfate hydroxide occurs with subsequent nucleophilic attack by the enol–part of 4–hydroxycoumarin–3–*C* atom at the carbonyl–*C* atom. This is immediately followed by a proton transfer and elimination of water to afford 2–hydroxyarylfurylmethane, a non–symmetric triarylmethane. The 2–hydroxyarylfurylmethane undergoes a domino–reaction, commencing with protonation of the furan ring at the 5th position with subsequent intramolecular nucleophilic attack of the oxygen atom by the hydroxyl group of 4–hydroxycoumarin at the α –position of the furanium ion. Finally, the reaction proceeds further with opening of the furan ring and recyclization to afford furo[3,2,–*c*]coumarin. Despite the favorable orientation of the –OH group, a mechanism with the participation of a molecule of water

and the formation of an intermediate 1,4–dicarbonyl compound is also not excluded, since selective protonation of the furan ring is not required in this case.

V. General procedure for the synthesis of non-symmetric triarylmethanes 14 a-n

A 50 mL round bottom flask was charged with aldehydes (1 mmol, 1.0 equiv), 2-methyl furan (1 mmol, 1 equiv) and 4- hydroxycoumarin (1 mmol, 1 equiv) in anhydrous THF (10 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O$ (15 mol%, 60 mg) was added and the solution was stirred at reflux temperature for 5 h in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (15 mL), washed using distilled water (3 × 15 mL) and dried over MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate).

The general method from above was used for the preparation of following non-symmetrical triarylmethanes:

4-hydroxy-3-((5-methylfuran-2-yl)(phenyl)methyl)-2H-chromen-2-one 14a

Brown solid, 278.7 mg, 87% yield. m.p. 64-66°C; $R_f = 0.54$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:25, SiO₂);IR (film) v_{max}/cm^{-1} 3347, 3060, 2923, 1713, 1610, 756; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, J = 8.0, 1.6 Hz, 1H), 7.58 – 7.47 (m, 2H), 7.37 – 7.26 (m, 6H), 6.11 (d, J = 3.1 Hz, 1H), 5.97 (dd, J = 3.2, 1.3 Hz, 1H), 5.94 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3, 161.4, 153.3, 152.8, 152.1, 138.4, 132.3, 129.2, 127.9, 127.7, 124.1, 123.5, 116.6, 116.2, 110.4, 106.7, 105.5, 40.9, 13.8.; HRMS (ESI-TOF) m/z: [M+Na]⁺Calcd for C₂₁H₁₆O₄ 355.0941; Found 355.0949.

4-hydroxy-3-((5-methylfuran-2-yl)(p-tolyl)methyl)-2H-chromen-2-one 14b

Brown oil, 283.4 mg, 82% yield.; $R_f = 0.51$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3358, 3053, 2986, 2923, 1702, 820; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, J = 8.0, 1.6 Hz, 1H), 7.55 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.47 (s, 1H), 7.35 – 7.26 (m, 2H), 7.16 (s, 4H), 6.12 (d, J = 3.1 Hz, 1H), 5.97 (dd, J = 3.2, 1.3 Hz, 1H), 5.91 (s, 1H), 2.34 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3, 161.3, 153.1, 152.8, 152.2, 137.5, 135.3, 132.3, 129.9, 127.8, 124.0, 123.5, 116.5, 116.2, 110.2, 106.7, 105.7, 40.6, 21.2, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₂H₁₈O₄ 369.1097; Found 369.1112.

4-hydroxy-3-((4-methoxyphenyl)(5-methylfuran-2-yl)methyl)-2H-chromen-2-one 14c

Brown oil, 304.2 mg, 84% yield.; $R_f = 0.48$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3360, 3054, 2986, 1706, 1627, 738; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (dd, J = 8.0, 1.6 Hz, 1H), 7.54 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.44 (s, 1H), 7.30 (ddd, J = 15.9, 8.2, 1.1 Hz, 2H), 7.21 – 7.16 (m, 2H), 6.90 – 6.84 (m, 2H), 6.10 (d, J = 3.1 Hz, 1H), 5.96 (dd, J = 3.1, 1.2 Hz, 1H), 5.86 (s, 1H), 3.79 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.4, 161.3, 159.2, 153.2, 152.8, 152.4, 132.3, 130.2, 129.1, 124.1, 123.5, 116.6, 116.3, 114.6, 110.2, 106.7, 105.7, 55.4, 40.2, 13.8.; HRMS (ESI-TOF) m/z: [M+Na]⁺Calcd for C₂₂H₁₈O₅ 385.1046; Found 385.1051.

4-hydroxy-3-((5-methylfuran-2-yl)(4-nitrophenyl)methyl)-2H-chromen-2-one 14d

Yellow solid, 308.6 mg, 80% yield. m.p. 195-197°C; $R_f = 0.43$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3684, 3366, 3029, 1702, 1627, 669; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 8.14 (m, 2H), 7.85 (dd, J = 7.9, 1.6 Hz, 2H), 7.59 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.37 – 7.28 (m, 2H), 6.17 (d, J = 3.1 Hz, 1H), 6.02 (d, J = 1.3 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.2, 161.8, 153.9, 152.8, 150.6, 147.4, 145.9, 132.9, 128.9, 124.4, 124.2, 123.7, 116.7, 116.0, 111.1, 107.1, 104.4, 40.9, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₁H₁₅NO₆ 400.0792; Found 400.0778.

3-((2-bromophenyl)(5-methylfuran-2-yl)methyl)-4-hydroxy-2H-chromen-2-one 14e

White solid, 332.4 mg, 84% yield. m.p. 186-187°C; $R_f = 0.49$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3354, 3054, 2986, 1708, 1629, 738; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (dd, J = 8.0, 1.6 Hz, 1H), 7.64 (dd, J = 7.9, 1.3 Hz, 1H), 7.55 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.31 (ddd, J = 14.2, 8.3, 1.2 Hz, 3H), 7.26 – 7.15 (m, 2H), 6.09 (s, 1H), 5.95 (qd, J = 3.1, 1.1 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.6, 161.7, 154.1, 152.9, 151.0, 137.9, 134.2, 132.4, 129.5, 128.5

128.1, 125.5, 124.1, 123.4, 116.7, 116.0, 110.8, 106.8, 104.5, 42.4, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₁H₁₅BrO₄ 433.0046; Found 433.0049.

3-((4-fluorophenyl)(5-methylfuran-2-yl)methyl)-4-hydroxy-2H-chromen-2-one 14f

Brown solid, 259.3 mg, 74% yield. m.p. 142-144°C; $R_f = 0.44$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3350, 3056, 2987, 1714, 1627, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (dd, J = 7.9, 1.7 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.35 – 7.26 (m, 2H), 7.26 – 7.20 (m, 2H), 7.05 – 6.98 (m, 2H), 6.10 (d, J = 3.1 Hz, 1H), 5.97 (dd, J = 3.1, 1.2 Hz, 1H), 5.90 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.5, 163.3, 161.4, 161.0, 153.5, 152.8, 152.0, 134.0, 133.9, 132.5, 129.6, 129.5, 124.1, 123.5, 116.6, 116.1, 116.1, 115.9, 110.5, 106.8, 105.3, 40.3, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₁H₁₅FO₄ 373.0914; Found 373.0908.

4-hydroxy-3-(1-(5-methylfuran-2-yl)propyl)-2H-chromen-2-one 14g

Yellow solid, 216.7 mg, 76% yield. m.p. 79-81°C; $R_f = 0.52$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3360, 3019, 2970, 2877, 1702, 756; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.80 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 6.22 (d, J = 3.1 Hz, 1H), 5.96 (dd, J = 3.1, 1.2 Hz, 1H), 4.48 (t, J = 7.9 Hz, 1H), 2.30 (d, J = 1.0 Hz,

3H), 2.13 – 2.02 (m, 1H), 1.92 (dt, *J* = 13.5, 7.3 Hz, 1H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.7, 160.6, 153.2, 152.5, 152.4, 132.0, 123.9, 123.3, 116.5, 116.4, 108.6, 106.7, 106.3, 36.8, 24.8, 13.7, 12.3.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₁₇H₁₆O₄ 307.0941; Found 307.0951.

4-hydroxy-3-(1-(5-methylfuran-2-yl)butyl)-2H-chromen-2-one 14h

Yellow solid, 232.6 mg, 78% yield. m.p. 101-103°C; $R_f = 0.54$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3366, 3054, 2962, 1702, 1627, 705; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.80 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (ddd, J = 8.6, 7.3, 1.7 Hz, 1H), 7.29 (dd, J = 8.7, 1.3 Hz, 1H), 7.26 – 7.23 (m, 1H), 6.21 (d, J = 3.1 Hz, 1H), 5.96 (dd, J = 3.1, 1.3 Hz, 1H), 4.58 (t, J = 7.9 Hz, 1H), 2.31 (d, J = 1.0 Hz, 3H), 2.08 – 1.97 (m, 1H), 1.85 (dddd, J = 13.5, 9.4, 7.4, 6.2 Hz, 1H), 1.46 – 1.30 (m, 2H), 0.93 (d, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 160.6, 153.4, 152.5, 152.3, 132.0, 123.9, 123.3, 116.5, 116.4, 108.4, 106.7, 106.6, 35.1, 33.8, 20.9, 14.0, 13.7.; HRMS (ESI-TOF) m/z: [M+Na]⁺Calcd for C₁₈H₁₈O₄ 321.1097; Found 321.1085.

4-hydroxy-3-(1-(5-methylfuran-2-yl)pentyl)-2H-chromen-2-one 14i

Yellow solid, 269.7 mg, 85% yield. m.p. 100-103°C; $R_f = 0.47$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3054, 1702, 1627, 1423, 1265, 705; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.80 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.26 – 7.21 (m, 1H), 6.21 (d, J = 3.1 Hz, 1H), 5.96 (dd, J = 3.1, 1.2 Hz, 1H), 4.55 (t, J = 7.9 Hz, 1H), 2.31 (s, 3H), 2.10 – 1.99 (m, 1H), 1.88 (ddt, J = 12.6, 6.6, 4.2 Hz, 1H), 1.41 – 1.28 (m, 4H), 0.91 – 0.84 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.7, 160.6, 153.4, 152.5, 152.4, 132.0, 123.9, 123.3, 116.5, 116.4, 108.4, 106.7, 106.6, 35.2, 31.4, 29.8, 22.7, 14.0, 13.7.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₁₉H₂₀O₄ 335.1254; Found 335.1251.

4-hydroxy-3-(2-methyl-1-(5-methylfuran-2-yl)propyl)-2H-chromen-2-one 14j

Brown solid, 241.6 mg, 81% yield. m.p. 142-144°C; $R_f = 0.49$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3374, 3018, 2965, 2925, 1686, 755; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.65 (s, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.28 (dd, J = 8.1, 4.9 Hz, 2H), 6.15 (d, J= 3.1 Hz, 1H), 5.94 (dd, J = 3.1, 1.3 Hz, 1H), 4.29 (d, J = 10.8 Hz, 1H), 2.46 (dp, J = 10.7, 6.6 Hz, 1H), 2.33 (d, J = 1.0 Hz, 3H), 0.95 (dd, J = 17.9, 6.5 Hz, 6H). ¹³C NMR (126 MHz, Chloroformd) δ 164.1, 160.4, 153.2, 152.5, 151.3, 132.0, 124.0, 123.5, 116.6, 116.4, 109.1, 107.0, 106.0, 42.4, 30.1, 21.5, 20.8, 13.7.; HRMS (ESI-TOF) m/z: [M+Na]⁺Calcd for C₁₈H₁₈O₄ 321.1097; Found 321.1088.

Yellow oil, 219.2 g, 64% yield.; $R_f = 0.57$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3682, 3378, 3019, 2932, 2856, 2400, 1715, 755; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.30 – 7.26 (m, 2H), 6.13 (d, J = 3.1 Hz, 1H), 5.93 (dd, J = 3.1, 1.3 Hz, 1H), 4.37 (d, J = 10.9 Hz, 1H), 2.33 (s, 3H), 2.10 (tdd, J = 11.0, 7.7, 3.4 Hz, 1H), 1.63 (ddd, J = 39.9, 16.3, 8.9 Hz, 5H), 1.24 – 1.00 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.1, 160.4, 152.8, 152.5, 151.3, 132.0, 123.9, 123.5, 116.6, 116.4, 109.2, 107.0, 105.6, 41.3, 39.2, 31.9, 31.0, 26.3, 26.3, 26.2, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₁H₂₂O₄ 361.1410; Found 361.1414.

Red solid, 298.3 mg, 78% yield. m.p. 184-185°C; $R_f = 0.41$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3397, 3054, 2987, 1702, 1629, 705; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (dd, J = 6.4, 3.5 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.71 (dd, J = 7.9, 1.6 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.44 (dd, J = 8.2, 7.2 Hz, 1H), 7.33 (d, J = 7.9 Hz, 2H), 7.26 – 7.21 (m, 2H), 6.57 (s, 1H), 6.02 (d, J = 3.1 Hz, 1H), 5.96 – 5.93 (m, 1H), 2.32 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.0, 162.4, 153.5, 152.9,

151.2, 135.5, 134.5, 132.3, 131.7, 129.3, 129.0, 127.2, 126.6, 125.5, 124.5, 124.0, 124.0, 123.4, 116.6, 116.0, 110.5, 106.7, 105.2, 38.8, 13.9; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₅H₁₈O₄ 405.1097; Found 405.1088.

4-hydroxy-3-((5-methylfuran-2-yl)(5-methylthiophen-2-yl)methyl)-2H-chromen-2-one 14m

Brown solid, 289.8 mg, 77% yield. m.p. 78-80°C; $R_f = 0.49$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3373, 3054, 2986, 1706, 1628, 704; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (dd, J = 7.9, 1.6 Hz, 1H), 7.69 (s, 1H), 7.55 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.34 – 7.27 (m, 2H), 6.68 (dd, J = 3.5, 1.4 Hz, 1H), 6.59 (dd, J = 3.5, 1.2 Hz, 1H), 6.25 (d, J = 3.1 Hz, 1H), 6.04 (s, 1H), 5.96 (dd, J = 3.0, 1.3 Hz, 1H), 2.43 (s, 3H), 2.30 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.1, 161.7, 153.0, 152.8, 151.2, 140.7, 139.4, 132.5, 126.1, 125.0, 124.1, 123.6, 116.6, 116.2, 109.6, 106.7, 105.5, 36.7, 15.5, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₀H₁₆O4S 375.0662; Found 375.0672.

3-(benzo[d][1,3]dioxol-5-yl(5-methylfuran-2-yl)methyl)-4-hydroxy-2H-chromen-2-one 14n

Red solid, 257.1 mg, 73% yield. m.p. 72-74°C; $R_f = 0.44$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:80 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3054,

2987, 1703, 1628, 1575, 705; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.81 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.54 (ddd, *J* = 8.5, 7.4, 1.6 Hz, 1H), 7.48 (s, 1H), 7.31 (dd, *J* = 18.6, 8.0 Hz, 2H), 6.79 – 6.73 (m, 2H), 6.73 – 6.68 (m, 1H), 6.13 (d, *J* = 3.1 Hz, 1H), 5.96 (d, *J* = 6.4 Hz, 3H), 5.83 (s, 1H), 2.29 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.3, 161.4, 153.3, 152.8, 152.0, 148.5, 147.3, 132.4, 132.1, 124.1, 123.5, 120.9, 116.6, 116.2, 110.3, 108.7, 108.6, 106.7, 105.6, 101.4, 40.6, 13.8.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₂H₁₆O₆ 399.0839; Found 399.0824.

VI. ¹H and ¹³C NMR Spectra for non-symmetric triarylmethanes 14 a-n

2.32

VII. Optimization of reaction conditions for the synthesis of Furo[3,2-c]pyran-4-ones 19 a-j

Table S1. Optimized reaction conditions for the synthesis of Furo[3,2-c]pyran-4-ones

entry	catalyst	cat. load ^a (mol%)	solvent	temp (°C)	time (h)	yield ^b (%)
1	none	0	toluene	reflux	24	0°
2	Fe ₂ (SO ₄) ₃ •xH ₂ O	5	toluene	rt	24	49
3	Fe ₂ (SO ₄) ₃ •xH ₂ O	10	toluene	reflux	0.25	73
4	Fe ₂ (SO ₄) ₃ •xH ₂ O	15	toluene	reflux	0.25	88
5	$Fe_2(SO_4)_3 \cdot xH_2O$	20	toluene	reflux	0.25	71
6	$Fe_2(SO_4)_3 \cdot xH_2O$	25	toluene	reflux	0.25	44
7	Fe ₂ O ₃	15	toluene	reflux	24	8
8	FeCl ₃	15	toluene	reflux	24	33
9	FeBr ₃	15	toluene	reflux	24	9
10	Sc(OTf) ₃	15	toluene	reflux	24	72
11	CH ₃ COOH	15	toluene	reflux	24	21

12	CF3COOH	15	toluene	reflux	24	27
13	HCl	15	toluene	reflux	24	11
14	Fe ₂ (SO ₄) ₃ •xH ₂ O	15	EtOH	reflux	24	0°
15	Fe ₂ (SO ₄) ₃ •xH ₂ O	15	DCM	reflux	24	0°
16	$Fe_2(SO_4)_3 \bullet xH_2O$	15	EtOAc	reflux	24	35
17	$Fe_2(SO_4)_3 \bullet xH_2O$	15	THF	reflux	24	0°
18	$Fe_2(SO_4)_3 \bullet xH_2O$	15	CHCl ₃	reflux	24	45

Reaction condition: 4-hydroxy-6-methyl-2-pyrone (1 mmol), 2-methylfuran (1 mmol) and benzaldehyde (1 mmol).^aBased on electrophile.^bIsolated yields of 2-alkyl-3-arylfuro Furo[3,2-*c*]pyran-4-ones **19a**.^cNo desired product was observed.

VIII. General procedure for the synthesis of furo[3,2,-c]pyran-4-ones 19 a-j

A 50 mL round bottom flask was charged with aldehydes (1 mmol, 1 equiv), 2-methyl furan (1 mmol, 1 equiv) and 4-hydroxy-6-methyl-2-pyrone (1 mmol, 1 equiv) in anhydrous toluene (10 mL). To this reaction mixture, Fe₂(SO₄)₃•xH₂O (15 mol%, 60 mg) was added and the solution was stirred at reflux temperature for 15 min in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (15 mL), washed using distilled water (3 × 15 mL) and dried over MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate).

The general method from above was used for the preparation of following furo[3,2,-*c*]*pyran-*4-*ones:*

6-methyl-2-(3-oxobutyl)-3-phenyl-4H-furo[3,2-c]pyran-4-one 19a

Brown solid, 245.7 mg, 88% yield. m.p. 75-77°C; $R_f = 0.18$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:2, SiO₂); IR (film) v_{max}/cm^{-1} 3056, 2987, 2925, 1733, 1320, 737; ¹H NMR (500 MHz, Chloroform-*d*) δ 6.94 (d, J = 1.6 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.35 (s, 1H), 5.99 (s, 2H), 3.01 (t, J = 7.5 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.32 (s, 3H), 2.15 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.6, 160.9, 159.7, 159.4, 151.8, 147.7, 147.5, 123.6, 123.5, 119.4, 110.5, 108.4, 107.7, 101.3, 95.6, 41.4, 30.0, 20.7, 20.3.; HRMS (EI-TOF) m/z: [M]⁺Calcd for C₁₈H₁₆O₄ 296.1043; Found: 296.1047.

6-methyl-2-(3-oxobutyl)-3-(p-tolyl)-4H-furo[3,2-c]pyran-4-one 19b

Brown oil, 263.6 mg, 85% yield.; $R_f = 0.14$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:2, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2987, 2924, 1735, 1266, 738; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.34 (d, J = 7.7 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 6.36 (s, 1H), 3.03 (t, J = 7.6 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.38 (s, 3H), 2.33 (s, 3H), 2.14 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.6, 161.0, 159.6, 159.4, 151.8, 137.7, 129.7,

129.2, 127.0, 119.6, 107.7, 95.6, 41.5, 30.0, 21.4, 20.7, 20.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₉H₁₈O₄ 310.1200; Found: 310.1189.

3-(4-methoxyphenyl)-6-methyl-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19c

Brown oil, 280.4 mg, 83% yield.; $R_f = 0.25$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:1, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 3018, 2925, 2837, 1735, 736; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (dd, J = 8.3, 7.6 Hz, 1H), 7.07 – 6.99 (m, 2H), 6.90 (ddd, J = 8.4, 2.7, 1.0 Hz, 1H), 6.37 (d, J = 1.0 Hz, 1H), 3.84 (s, 3H), 3.06 (dd, J = 8.2, 6.7 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 2.33 (d, J = 1.0 Hz, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.6, 161.1, 159.7, 159.5, 159.3, 152.1, 131.3, 129.4, 122.2, 119.6, 115.6, 113.9, 107.6, 95.6, 55.4, 41.4, 30.0, 20.8, 20.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₉H₁₈O4 326.1149; Found: 326.1139.

6-methyl-3-(4-nitrophenyl)-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19d

Orange solid, 264.2 mg, 82% yield. m.p. 150-152°C; $R_f = 0.38$ (EtOAc:Hexanes = 1:1, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:1.5, SiO₂); IR (film) v_{max}/cm^{-1} 3058, 2988, 2924, 1736, 1346, 737; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.6 Hz, 2H), 6.41 (s, 1H), 3.03 (t, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.34 (s, 3H), 2.16 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.2, 161.4, 160.4, 159.1, 153.2, 147.2, 137.1, 130.8, 123.6, 118.0, 107.1, 95.5, 40.8, 29.9, 20.6, 20.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₈H₁₅NO₆ 341.0894; Found: 341.0891.

3-(4-fluorophenyl)-6-methyl-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19e

Brown oil, 266.8 mg, 85% yield.; $R_f = 0.18$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:2, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2987, 2926, 2305, 1732, 748; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.38 (m, 2H), 7.10 (t, *J* = 8.7 Hz, 2H), 6.37 (d, *J* = 1.1 Hz, 1H), 3.00 (dd, *J* = 8.2, 6.8 Hz, 2H), 2.82 (dd, *J* = 8.1, 6.7 Hz, 2H), 2.32 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.5, 163.5, 161.6, 161.1, 159.8, 159.4, 152.0, 131.7, 131.6, 126.0, 125.9, 118.8, 115.6, 115.4, 107.6, 95.6, 41.2, 30.0, 20.6, 20.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₈H₁₅FO₄ 314.0949; Found: 314.0939.

3-ethyl-6-methyl-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19f

Yellow solid, 200.7 mg, 81% yield. m.p. 119-120°C; $R_f = 0.22$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:3, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2986, 2935, 1732, 1265, 705; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.28 (d, *J* = 1.0 Hz, 1H), 2.90 (d, *J* = 7.6 Hz, 2H), 2.82 – 2.75 (m, 2H), 2.62 (q, *J* = 7.5 Hz, 2H), 2.29 (d, *J* = 0.9 Hz, 3H), 2.17 (s, 3H), 1.20 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.8, 160.8, 160.1, 159.1, 150.8, 119.9, 108.8, 95.7, 41.8, 30.1, 20.3, 20.0, 17.0, 15.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₄H₁₆O₄ 248.1043; Found: 248.1033.

6-methyl-2-(3-oxobutyl)-3-pentyl-4H-furo[3,2-c]pyran-4-one 19g

Brown solid, 249.4 mg, 86 % yield. m.p. 60-62°C; $R_f = 0.22$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:3, SiO₂); IR (film) v_{max}/cm^{-1} 3057, 2957, 2859, 1736, 1266, 738, 688; ¹H NMR (500 MHz, Chloroform-*d*) δ 6.28 (s, 1H), 2.90 (t, J = 7.4 Hz, 2H), 2.78 (t, J = 7.4 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 2.29 (s, 3H), 2.17 (s, 3H), 1.59 (p, J = 7.5 Hz, 2H), 1.33 – 1.27 (m, 4H), 0.88 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 206.8, 160.8, 160.1, 159.0, 151.2, 118.5, 108.8, 95.7, 41.7, 31.5, 30.1, 30.1, 23.5, 22.6, 20.3, 20.1, 14.2.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₇H₂₂O₄ 290.1513; Found: 290.1501.

3-(benzo[d][1,3]dioxol-4-yl)-6-methyl-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19h

Brown oil, 251.6 mg, 74% yield.; $R_f = 0.11$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:1, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2987, 2926, 1733, 1653, 734; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.94 (d, J = 1.6 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.36 (d, J = 1.0 Hz, 1H), 5.99 (s, 2H), 3.02 (dd, J = 8.3, 6.7 Hz, 2H), 2.81 (dd, J = 8.3, 6.7

Hz, 2H), 2.33 (s, 3H), 2.16 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.6, 160.9, 159.7, 159.4, 151.9, 147.7, 147.5, 123.6, 123.5, 119.5, 110.5, 108.4, 101.3, 95.6, 41.4, 30.0, 20.7, 20.3.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₉H₁₆O₆ 340.0941; Found: 340.0943.

6-methyl-3-(5-methylthiophen-2-yl)-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19i

Brown oil, 195.6 mg, 62% yield.; $R_f = 0.31$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:3, SiO₂); IR (film) v_{max}/cm^{-1} 3054, 2987, 1718, 1591, 1422, 737; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (d, J = 3.5 Hz, 1H), 6.75 (dd, J = 3.5, 1.2 Hz, 1H), 6.33 (d, J = 1.0 Hz, 1H), 3.16 (dd, J = 8.4, 6.8 Hz, 2H), 2.84 (dd, J = 8.4, 6.8 Hz, 2H), 2.50 (d, J = 1.1 Hz, 3H), 2.32 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.5, 161.0, 159.9, 159.3, 151.9, 140.6, 129.3, 127.9, 125.9, 113.7, 107.4, 95.5, 41.5, 30.0, 21.3, 20.3, 15.4.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₇H₁₆O4S 316.0764; Found: 316.0759.

6-methyl-3-(5-methylfuran-2-yl)-2-(3-oxobutyl)-4H-furo[3,2-c]pyran-4-one 19j

Brown oil, 201.1 mg, 67% yield.; $R_f = 0.40$ (EtOAc:Hexanes = 1:2, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:10 to 1:2, SiO₂); IR (film) v_{max}/cm^{-1} 3054, 2924, 1716, 1652, 1622, 738, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 (d, J = 3.3 Hz, 1H), 6.34 (d, J = 1.2 Hz, 1H), 6.09 (dd, J = 3.1, 1.2 Hz, 1H), 3.34 (dd, J = 8.4, 6.8 Hz, 2H), 2.92 – 2.86 (m, 2H),

2.35 (s, 3H), 2.34 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.1, 161.2, 159.9, 159.4, 151.8, 151.2, 143.6, 112.7, 110.5, 107.8, 106.0, 95.5, 41.8, 29.9, 22.3, 20.2, 13.8.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₁₇H₁₆O₅ 300.0992; Found: 300.0992.

IX. ¹H and ¹³C NMR Spectra for Furo[3,2,-*c*]pyran-4-ones 19 a-j

X. Procedure for the synthesis of Phenprocoumon analogue 23

A 50 mL round bottom flask was charged with benzaldehyde (1 mmol, 1 equiv), 1,3,5trimethoxybenze (1 mmol, 1 equiv) and 4- hydroxycoumarin (1 mmol, 1 equiv) in anhydrous tetrahydrofuran (25 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O$ (60 mg, 15 mol%) was added and the solution was stirred at reflux temperatures for 5 hours in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (15 mL), washed using distilled water (3 × 15 mL) and dried over MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate).

4-hydroxy-3-(1-(2,4,6-trimethoxyphenyl)propyl)-2H-chromen-2-one 23.

White solid, 313.6 mg, 84% yield. m.p. 136-138°C; $R_f = 0.56$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:70 to 1:20, SiO₂); IR (film) v_{max}/cm^{-1} 3174, 3056, 2959, 2840, 1697, 704; ¹H NMR (500 MHz, Chloroform-*d*) δ 9.38 (s, 1H), 7.77 (dd, J = 8.0, 1.6 Hz, 1H), 7.41 (dd, J = 7.7, 1.6 Hz, 1H), 7.24 – 7.15 (m, 2H), 6.19 (s, 2H), 4.99 (t, J = 8.4 Hz, 1H), 3.90 (s, 6H), 3.79 (s, 3H), 2.10 (h, J = 7.4 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.9, 160.4, 160.2, 158.9, 152.3, 131.2, 123.4, 123.3, 116.8, 116.1, 109.8, 107.9, 91.6, 56.1, 55.4, 33.1, 25.0, 13.1.; HRMS (ESI-TOF) *m/z*: [M+Na]⁺Calcd for C₂₁H₂₂O₆ 393.3902; Found 393.3918.

XI. ¹H and ¹³C NMR Spectra for Phenprocoumon analogue 23

Compound 23 (500 MHz, Chloroform-d)

XII. Optimization of reaction conditions for the synthesis of benzofurans 25 a-f

Table S2. Optimized reaction conditions for the synthesis of benzofurans 25 a-f

12	CF3COOH	15	EtOH	reflux	24	22	
13	HCl	15	EtOH	reflux	24	6	
14	Fe ₂ (SO ₄) ₃ •xH ₂ O	15	toluene	reflux	24	71	
15	$Fe_2(SO_4)_3 \bullet xH_2O$	15	DCM	reflux	24	0°	
16	$Fe_2(SO_4)_3 \bullet xH_2O$	15	EtOAc	reflux	24	29	
17	$Fe_2(SO_4)_3 \bullet xH_2O$	15	THF	reflux	24	0 ^c	
18	$Fe_2(SO_4)_3 \bullet xH_2O$	15	CHCl ₃	reflux	24	43	

Reaction condition: salicylaldehyde (1 mmol), 2-methylfuran (1 mmol) and 1,3,5-trimethoxybenze (1 mmol).^aBased on electrophile.^bIsolated yields of benzofurans 25a.^cNo desired product was observed.

XIII. General procedure for the synthesis of benzofurans 25 a-f

A 50 mL round bottom flask was charged with a substituted salicylaldehyde (1 mmol, 1 equiv), 2methyl furan (1 mmol, 1 equiv) and 1,3,5-trimethoxybenze (1 mmol, 1 equiv) in ethanol (10 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O(15 \text{ mol}\%, 60 \text{ mg})$ was added and the solution was stirred at reflux temperatures for 2 hours in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by vacuo. The residue was dissolved in DCM (15 mL), washed using distilled water (3 × 15 mL) and dried over MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate).

The general method from above was used for the preparation of following benzofurans:

Yellow oil, 293.3 mg, 90% yield.; $R_f = 0.38$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3054, 2986, 2941, 1716, 1456, 738, 705; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.39 (m, 1H), 7.22 – 7.17 (m, 2H), 7.16 – 7.11 (m, 1H), 6.26 (s, 2H), 3.89 (s, 3H), 3.72 (s, 6H), 2.94 – 2.84 (m, 4H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.9, 161.4, 159.3, 154.7, 154.2, 130.0, 123.0, 122.1, 120.7, 110.8, 109.0, 101.8, 91.0, 55.8, 55.5, 41.4, 30.0, 22.1.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₂₂O₅ 354.1462; Found: 354.1456.

4-(5-nitro-3-(2,4,6-trimethoxyphenyl)benzofuran-2-yl)butan-2-one 25b

Yellow oil, 266.2 mg, 81% yield.; $R_f = 0.31$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3682, 3020, 2964, 2941, 2841, 1717; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.13 (dd, J = 8.9, 2.4 Hz, 1H), 8.09 (d, J = 2.4 Hz, 1H), 7.46 (d, J = 8.9 Hz, 1H), 6.26 (s, 2H), 3.90 (s, 3H), 3.74 (s, 6H), 2.93 (ddd, J = 8.5, 6.3, 1.7 Hz, 2H), 2.91 – 2.84 (m, 2H), 2.16 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.2, 162.0, 159.2, 158.3, 157.3, 144.0, 130.7, 119.1, 117.4, 111.0, 110.2, 99.8, 91.0, 55.8, 55.6, 40.9, 30.0, 22.0.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₂₁NO₇ 399.1313; Found: 399.1308.

4-(5-bromo-3-(2,4,6-trimethoxyphenyl)benzofuran-2-yl)butan-2-one 25c

Brown oil, 312.2 mg, 78% yield.; $R_f = 0.37$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3054, 3003, 2962, 2940, 2840, 1718, 704; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.26 (m, 3H), 6.24 (s, 2H), 3.88 (s, 3H), 3.73 (s, 6H), 2.92 – 2.81 (m, 4H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.4, 161.6, 159.2, 156.2, 153.0, 132.0, 125.7, 123.3, 115.3, 112.2, 108.7, 100.8, 90.9, 55.7, 55.5, 41.1, 29.9, 22.0.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₁H₂₁BrO₅ 432.0567; Found: 432.0579.

4-(7-methoxy-3-(2,4,6-trimethoxyphenyl)benzofuran-2-yl)butan-2-one 25d

Brown solid, 326.7 mg, 85% yield. m.p. 103-105°C; $R_f = 0.32$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3055, 2962, 2940, 2839, 1716, 784, 703; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.05 (t, J = 7.9 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 6.24 (s, 2H), 4.01 (s, 3H), 3.88 (s, 3H), 3.71 (s, 6H), 2.90 (s, 4H), 2.13 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 207.8, 161.4, 159.3, 154.9,

145.1, 143.4, 131.7, 122.7, 113.3, 109.4, 105.5, 101.7, 91.0, 56.2, 55.8, 55.5, 41.5, 29.9, 22.0.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₂H₂₄O₆ 384.1567; Found: 384.1574.

4-(4,6-di-tert-butyl-3-(2,4,6-trimethoxyphenyl)benzofuran-2-yl)butan-2-one 25e

Brown solid, 349.7 mg, 75% yield. m.p. 140-143°C; $R_f = 0.39$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 2956, 2869, 2838, 1717, 1603, 974, 735; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (d, J = 2.0 Hz, 1H), 7.00 (d, J = 1.9 Hz, 1H), 6.27 (s, 2H), 3.90 (s, 3H), 3.75 (s, 6H), 2.94 – 2.82 (m, 4H), 2.17 (s, 3H), 1.52 (s, 9H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.0, 161.2, 159.3, 153.8, 150.7, 144.6, 132.9, 129.5, 117.7, 115.0, 108.5, 102.4, 91.0, 55.8, 55.5, 41.7, 34.9, 34.6, 32.1, 30.3, 30.0, 22.4.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₉H₃₈O₅ 466.2714; Found: 466.2694.

4-(5-methyl-3-(2,4,6-trimethoxyphenyl)benzofuran-2-yl)butan-2-one 25f

Yellow oil, 320.3 mg, 83% yield.; $R_f = 0.35$ (EtOAc:Hexanes = 1:3, SiO₂); Flash column chromatography eluent: EtOAc:Hexanes (1:60 to 1:10, SiO₂); IR (film) v_{max}/cm^{-1} 3053, 2939, 2839, 1716, 1600, 737, 703; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 8.3 Hz, 1H), 7.00 (dd, *J* = 8.3, 1.8 Hz, 1H), 6.95 (dt, *J* = 1.8, 0.8 Hz, 1H), 6.25 (s, 2H), 3.89 (s, 3H), 3.72 (s, 6H),

2.86 (q, *J* = 2.4 Hz, 4H), 2.37 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.0, 161.4, 159.4, 154.8, 152.7, 131.5, 130.1, 124.2, 120.4, 110.3, 108.7, 101.9, 91.0, 55.8, 55.5, 41.5, 30.0, 22.1, 21.5.; HRMS (EI-TOF) *m/z*: [M]⁺Calcd for C₂₂H₂₄O₅ 368.1618; Found: 368.1616.

XIV. ¹H and ¹³C NMR Spectra for benzofurans 25 a-f

XV. Procedure for gram scale reactions

Scheme S2. Reaction conditions for gram-scale synthesis of 13a.

A 250 mL round bottom flask was charged with benzaldehyde (10 mmol, 1 equiv), 2-methyl furan (10 mmol, 1 equiv) and 4- hydroxycoumarin (10 mmol, 1 equiv) in anhydrous toluene (25 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O(15 \text{ mol}\%, 60 \text{ mg})$ was added and the solution was stirred at reflux temperature for 6 h in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (30 mL), washed using distilled water (3 × 30 mL) and dried over MgSO4. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate) to yield **13a** as a grey solid (251.8 g, 79% yield).

Scheme S3. Reaction conditions for gram-scale synthesis of 14a.

A 250 mL round bottom flask was charged with benzaldehyde (10 mmol, 1 equiv), 2-methyl furan (10 mmol, 1 equiv) and 4- hydroxycoumarin (10 mmol, 1 equiv) in anhydrous THF (25 mL). To this reaction mixture, Fe₂(SO₄)₃•*x*H₂O (15 mol%, 60 mg) was added and the solution was stirred

at reflux temperature for 5 h in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (30 mL), washed using distilled water (3×30 mL) and dried over MgSO4. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate) to yield **14a** as a brown solid (268.7 g, 81% yield).

Scheme S4. Reaction conditions for gram-scale synthesis of 19a.

A 250 mL round bottom flask was charged with benzaaldehyde (10 mmol, 1 equiv), 2-methyl furan (10 mmol, 1 equiv) and 4-hydroxy-6-methyl-2-pyrone (10 mmol, 1 equiv) in anhydrous toluene (25 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O$ (15 mol%, 60 mg) was added and the solution was stirred at reflux temperature for 15 min in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by rotovap. The residue was dissolved in DCM (30 mL), washed using distilled water (3 × 30 mL) and dried over MgSO4. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate) to yield **19a** as a dark brown solid (236.7 g, 81% yield).

Scheme S5. Reaction conditions for gram-scale synthesis of 25a.

A 250 mL round bottom flask was charged with a substituted salicylaldehyde (9 mmol, 1 equiv), 2-methyl furan (9 mmol, 1 equiv) and 1,3,5-trimethoxybenze (9 mmol, 1 equiv) in ethanol (20 mL). To this reaction mixture, $Fe_2(SO_4)_3 \cdot xH_2O$ (15 mol%, 60 mg) was added and the solution was stirred at reflux temperatures for 2 hours in an oil bath. The reaction mixture was cooled to room temperature and the organic solvent was removed by vacuo. The residue was dissolved in DCM (25 mL), washed using distilled water (3 × 25 mL) and dried over MgSO₄. The product was then purified by column chromatography on silica gel (eluent: hexanes/ethyl acetate) to yield **25a** as a light yellow oil (284.8 mg, 79% yield).

XVI. Single crystal X-ray diffraction of compound 13d

Data collection

A crystal (approximate dimensions $0.190 \times 0.180 \times 0.140 \text{ mm}^3$) was placed onto the tip of a 0.1 mm Mitegen loop and mounted on a Bruker VENTURE PHOTON-III diffractometer for a data collection at 100(2) K.¹ A preliminary set of cell constants was calculated from reflections harvested from three sets of frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced an initial orientation matrix determined from 410 reflections. The data collection was carried out using CuK radiation (parabolic mirrors) with a frame time of 10 seconds and a detector distance of 8.0 cm. A strategy program was used to assure complete coverage of all unique data to a resolution of 0.70 Å. All major sections of frames were collected with 1.20° steps in or at different detector positions in 2 . The intensity data were corrected for absorption and decay (SADABS).² Final cell constants were calculated from 2936 strong reflections from the actual data collection after integration (SAINT).³ Please refer to Table 1 for additional crystal and refinement information.

Structure solution and refinement

The structure was solved using SHELXT-2014/5 (Sheldrick, 2015)⁴ and refined using SHELXL-2018/3 (Sheldrick, 2015).⁴ The space group C2/c was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0406 and wR2 = 0.1031 (F^2 , obs. data). *Structure description*

The structure is a structural isomer of the one originally suggested. The positions of C13 and C19 were predicted to be in opposite positions.

Data collection and structure solution were conducted at the X-Ray Crystallographic Laboratory, 192 Kolthoff Hall, Department of Chemistry, University of Minnesota. All calculations were performed using Pentium computers using the current SHELXTL suite of programs. All publications arising from this report MUST either 1) include Victor G. Young, Jr. as a coauthor or 2) acknowledge Victor G. Young, Jr. and the X-Ray Crystallographic Laboratory. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (#1229400) and the University of Minnesota.

Figure S1. ORTEP diagram (80% probability ellipsoids) of 13d

Figure S2: Intermolecular interactions in crystal structure of 13d

 Table S3. Crystal data and structure refinement of 13d, CCDC:1961601.

Identification code	19070z			
Empirical formula	C ₂₁ H ₁₅ NO ₆			
Formula weight	377.34			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions	<i>a</i> = 18.9040(8) Å	$\alpha = 90^{\circ}$		
	b = 7.2383(3) Å	$\beta = 96.279(2)^{\circ}$		
	c = 25.7728(11) Å	$\gamma=90^\circ$		
Volume	3505.4(3) Å ³			
Ζ	8			
Density (calculated)	1.430 Mg/m ³			
Absorption coefficient	0.106 mm ⁻¹			
F(000)	1568			
Crystal color, morphology	Colourless, Block			
Crystal size	0.190 x 0.180 x 0.140 m	m ³		
Theta range for data collection	2.168 to 30.561°			
Index ranges	$-26 \le h \le 26, -9 \le k \le 10$, $-36 \le l \le 36$		
Reflections collected	26887			
Independent reflections	5379 [<i>R</i> (int) = 0.0297]			
Observed reflections	4597	4597		
Completeness to theta = 25.242°	99.9%			
Absorption correction	Multi-scan	Multi-scan		
Max. and min. transmission	0.7461 and 0.6986	0.7461 and 0.6986		
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F^2		
Data / restraints / parameters	5379 / 0 / 254			
Goodness-of-fit on F^2	1.039			
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0406, wR2 = 0.10	R1 = 0.0406, wR2 = 0.1031		
R indices (all data)	R1 = 0.0499, wR2 = 0.10	R1 = 0.0499, wR2 = 0.1094		
Largest diff. peak and hole	0.413 and -0.234 e.Å ⁻³	0.413 and -0.234 e.Å ⁻³		

	Х	У	Z	U_{eq}
01	6877(1)	5159(1)	4514(1)	18(1)
C2	7580(1)	4605(1)	4583(1)	17(1)
C3	7872(1)	3923(2)	4149(1)	20(1)
C4	8582(1)	3397(2)	4204(1)	21(1)
C5	9002(1)	3538(2)	4684(1)	21(1)
C6	8707(1)	4191(2)	5116(1)	19(1)
C7	7989(1)	4717(1)	5070(1)	16(1)
C8	7602(1)	5344(1)	5481(1)	15(1)
С9	6899(1)	5832(1)	5426(1)	15(1)
C10	6500(1)	5805(1)	4913(1)	17(1)
011	5892(1)	6268(1)	4794(1)	21(1)
012	7883(1)	5467(1)	5986(1)	16(1)
C13	7337(1)	6050(1)	6266(1)	15(1)
C14	7539(1)	6163(2)	6839(1)	16(1)
C15	8057(1)	7749(2)	6988(1)	17(1)
C16	8376(1)	7643(2)	7550(1)	17(1)
017	8119(1)	6703(1)	7870(1)	23(1)
C18	9036(1)	8781(2)	7690(1)	28(1)
C19	6723(1)	6310(1)	5942(1)	15(1)
C20	6041(1)	6857(1)	6121(1)	15(1)
C21	5399(1)	6010(2)	5927(1)	17(1)
C22	4771(1)	6418(2)	6137(1)	18(1)
C23	4792(1)	7725(2)	6533(1)	17(1)
C24	5412(1)	8648(2)	6720(1)	18(1)
C25	6034(1)	8196(2)	6514(1)	16(1)
O26	3627(1)	7126(1)	6676(1)	31(1)
N26	4140(1)	8153(2)	6767(1)	22(1)
027	4141(1)	9523(2)	7051(1)	32(1)

Table S4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 19070z. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

O1-C2	1.3813(13)	C14-H14B	0.9900
O1-C10	1.3953(13)	C15-C16	1.5093(14)
C2-C3	1.3914(15)	C15-H15A	0.9900
C2-C7	1.4010(14)	C15-H15B	0.9900
C3-C4	1.3868(17)	C16-O17	1.2110(14)
С3-Н3	0.9500	C16-C18	1.5050(16)
C4-C5	1.3993(16)	C18-H18A	0.9800
С4-Н4	0.9500	C18-H18B	0.9800
C5-C6	1.3831(16)	C18-H18C	0.9800
С5-Н5	0.9500	C19-C20	1.4696(14)
C6-C7	1.4029(15)	C20-C25	1.4030(14)
С6-Н6	0.9500	C20-C21	1.4032(14)
C7-C8	1.4245(15)	C21-C22	1.3890(15)
C8-O12	1.3533(12)	C21-H21	0.9500
C8-C9	1.3668(14)	C22-C23	1.3882(15)
C9-C10	1.4478(14)	C22-H22	0.9500
C9-C19	1.4487(14)	C23-C24	1.3877(15)
C10-O11	1.2050(13)	C23-N26	1.4645(14)
O12-C13	1.3889(13)	C24-C25	1.3831(15)
C13-C19	1.3672(14)	C24-H24	0.9500
C13-C14	1.4871(14)	С25-Н25	0.9500
C14-C15	1.5310(15)	O26-N26	1.2244(14)
C14-H14A	0.9900	N26-O27	1.2328(14)
C2-O1-C10	124.30(8)	C6-C5-C4	119.82(11)
O1-C2-C3	117.33(9)	С6-С5-Н5	120.1
O1-C2-C7	121.81(9)	C4-C5-H5	120.1
C3-C2-C7	120.86(10)	C5-C6-C7	119.76(10)
C4-C3-C2	118.65(10)	С5-С6-Н6	120.1
С4-С3-Н3	120.7	С7-С6-Н6	120.1
С2-С3-Н3	120.7	C2-C7-C6	119.58(10)
C3-C4-C5	121.31(11)	C2-C7-C8	114.01(10)
С3-С4-Н4	119.3	C6-C7-C8	126.40(10)
С5-С4-Н4	119.3	012-C8-C9	110.96(9)

Table S5. Bond lengths [Å] and angles [°] for 19070z.

012-C8-C7	123.77(9)	H18A-C18-H18B	109.5
C9-C8-C7	125.23(9)	C16-C18-H18C	109.5
C8-C9-C10	119.65(10)	H18A-C18-H18C	109.5
C8-C9-C19	106.59(9)	H18B-C18-H18C	109.5
C10-C9-C19	133.76(10)	C13-C19-C9	105.20(9)
O11-C10-O1	116.99(9)	C13-C19-C20	124.16(9)
O11-C10-C9	128.15(10)	C9-C19-C20	130.56(9)
O1-C10-C9	114.86(9)	C25-C20-C21	118.92(10)
C8-O12-C13	106.50(8)	C25-C20-C19	119.33(9)
C19-C13-O12	110.75(9)	C21-C20-C19	121.68(9)
C19-C13-C14	135.01(10)	C22-C21-C20	120.69(10)
O12-C13-C14	114.17(8)	С22-С21-Н21	119.7
C13-C14-C15	112.20(9)	C20-C21-H21	119.7
C13-C14-H14A	109.2	C23-C22-C21	118.34(10)
C15-C14-H14A	109.2	С23-С22-Н22	120.8
C13-C14-H14B	109.2	С21-С22-Н22	120.8
C15-C14-H14B	109.2	C24-C23-C22	122.63(10)
H14A-C14-H14B	107.9	C24-C23-N26	118.12(10)
C16-C15-C14	112.34(9)	C22-C23-N26	119.25(10)
C16-C15-H15A	109.1	C25-C24-C23	118.25(10)
C14-C15-H15A	109.1	С25-С24-Н24	120.9
С16-С15-Н15В	109.1	С23-С24-Н24	120.9
C14-C15-H15B	109.1	C24-C25-C20	121.09(10)
H15A-C15-H15B	107.9	С24-С25-Н25	119.5
O17-C16-C18	121.93(10)	С20-С25-Н25	119.5
O17-C16-C15	122.29(10)	O26-N26-O27	123.57(10)
C18-C16-C15	115.78(10)	O26-N26-C23	118.54(10)
C16-C18-H18A	109.5	O27-N26-C23	117.88(10)
C16-C18-H18B	109.5		

Symmetry transformations used to generate equivalent atoms:

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	23(1)	18(1)	13(1)	-1(1)	0(1)	-1(1)
C2	22(1)	12(1)	15(1)	2(1)	2(1)	-2(1)
C3	30(1)	14(1)	14(1)	1(1)	4(1)	-3(1)
C4	31(1)	14(1)	19(1)	0(1)	9(1)	-2(1)
C5	24(1)	17(1)	23(1)	1(1)	7(1)	0(1)
C6	22(1)	17(1)	17(1)	1(1)	3(1)	-1(1)
C7	21(1)	13(1)	14(1)	1(1)	3(1)	-2(1)
C8	20(1)	14(1)	12(1)	1(1)	-1(1)	-2(1)
C9	19(1)	13(1)	13(1)	1(1)	-1(1)	-2(1)
C10	23(1)	13(1)	14(1)	0(1)	-1(1)	-3(1)
011	22(1)	22(1)	18(1)	-2(1)	-4(1)	1(1)
012	16(1)	20(1)	12(1)	0(1)	1(1)	-1(1)
C13	16(1)	15(1)	14(1)	-1(1)	1(1)	-2(1)
C14	16(1)	19(1)	13(1)	1(1)	0(1)	-1(1)
C15	19(1)	19(1)	13(1)	1(1)	-1(1)	-3(1)
C16	18(1)	19(1)	15(1)	-3(1)	-1(1)	5(1)
017	30(1)	24(1)	14(1)	1(1)	1(1)	3(1)
C18	22(1)	38(1)	24(1)	-8(1)	-3(1)	-4(1)
C19	17(1)	12(1)	14(1)	0(1)	0(1)	-2(1)
C20	18(1)	14(1)	13(1)	1(1)	-1(1)	0(1)
C21	18(1)	16(1)	15(1)	-2(1)	-2(1)	0(1)
C22	16(1)	20(1)	17(1)	0(1)	-2(1)	0(1)
C23	17(1)	20(1)	15(1)	1(1)	0(1)	3(1)
C24	22(1)	17(1)	14(1)	-2(1)	-1(1)	1(1)
C25	18(1)	15(1)	15(1)	0(1)	-2(1)	-2(1)
O26	21(1)	35(1)	38(1)	0(1)	7(1)	-1(1)
N26	19(1)	28(1)	16(1)	1(1)	0(1)	6(1)
O27	26(1)	44(1)	26(1)	-14(1)	-1(1)	10(1)

Table S6. Anisotropic displacement parameters (Å²x 10³) for 19070z. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

Х	У	Z	U(eq)
7591	3819	3822	24
8787	2932	3910	25
9489	3187	4713	25
8989	4282	5444	22
7761	4983	6964	19
7104	6340	7016	19
8445	7717	6759	21
7803	8939	6929	21
9141	8836	8070	42
8959	10034	7551	42
9437	8213	7539	42
5393	5148	5648	20
4339	5817	6014	21
5408	9566	6983	22
6465	8802	6640	20
	x 7591 8787 9489 8989 7761 7104 8445 7803 9141 8959 9437 5393 4339 5408 6465	x y 7591 3819 8787 2932 9489 3187 8989 4282 7761 4983 7104 6340 8445 7717 7803 8939 9141 8836 8959 10034 9437 8213 5393 5148 4339 5817 5408 9566 6465 8802	x y z 7591 3819 3822 8787 2932 3910 9489 3187 4713 8989 4282 5444 7761 4983 6964 7104 6340 7016 8445 7717 6759 7803 8939 6929 9141 8836 8070 8959 10034 7551 9437 8213 7539 5393 5148 5648 4339 5817 6014 5408 9566 6983 6465 8802 6640

Table S7. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 19070z.

Table S8. Torsion angles [°] for 19070z.

C10-O1-C2-C3	177.41(9)	C14-C15-C16-O17	-17.12(15)
C10-O1-C2-C7	-2.52(15)	C14-C15-C16-C18	162.88(10)
O1-C2-C3-C4	178.47(9)	012-C13-C19-C9	0.74(12)
C7-C2-C3-C4	-1.60(16)	C14-C13-C19-C9	-175.87(11)
C2-C3-C4-C5	0.15(16)	012-C13-C19-C20	177.58(9)
C3-C4-C5-C6	0.84(17)	C14-C13-C19-C20	0.98(19)
C4-C5-C6-C7	-0.39(17)	C8-C9-C19-C13	-0.54(11)
O1-C2-C7-C6	-178.03(9)	C10-C9-C19-C13	-179.86(11)
C3-C2-C7-C6	2.05(16)	C8-C9-C19-C20	-177.10(10)
O1-C2-C7-C8	3.38(14)	C10-C9-C19-C20	3.57(19)
C3-C2-C7-C8	-176.55(10)	C13-C19-C20-C25	40.75(15)
C5-C6-C7-C2	-1.03(16)	C9-C19-C20-C25	-143.25(11)
C5-C6-C7-C8	177.38(11)	C13-C19-C20-C21	-136.08(11)
C2-C7-C8-O12	176.63(9)	C9-C19-C20-C21	39.91(17)
C6-C7-C8-O12	-1.85(17)	C25-C20-C21-C22	-3.25(16)
C2-C7-C8-C9	-0.83(15)	C19-C20-C21-C22	173.60(10)
C6-C7-C8-C9	-179.32(11)	C20-C21-C22-C23	2.00(16)
O12-C8-C9-C10	179.59(9)	C21-C22-C23-C24	0.73(16)
C7-C8-C9-C10	-2.67(16)	C21-C22-C23-N26	-178.95(10)
012-C8-C9-C19	0.15(12)	C22-C23-C24-C25	-2.12(16)
C7-C8-C9-C19	177.89(10)	N26-C23-C24-C25	177.57(10)
C2-O1-C10-O11	178.85(10)	C23-C24-C25-C20	0.80(16)
C2-O1-C10-C9	-1.07(14)	C21-C20-C25-C24	1.82(15)
C8-C9-C10-O11	-176.40(11)	C19-C20-C25-C24	-175.10(10)
C19-C9-C10-O11	2.9(2)	C24-C23-N26-O26	-166.81(10)
C8-C9-C10-O1	3.51(14)	C22-C23-N26-O26	12.89(15)
C19-C9-C10-O1	-177.23(10)	C24-C23-N26-O27	12.36(15)
C9-C8-O12-C13	0.29(11)	C22-C23-N26-O27	-167.94(10)
C7-C8-O12-C13	-177.49(10)		
C8-O12-C13-C19	-0.66(11)		
C8-O12-C13-C14	176.71(9)		
C19-C13-C14-C15	-113.42(13)		
O12-C13-C14-C15	70.05(12)		

-168.59(9)

C13-C14-C15-C16

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C3-H3O26#1	0.95	2.60	3.4357(15)	146.9
C14-H14AO27#2	0.99	2.61	3.2433(14)	121.5
C22-H22O1#1	0.95	2.64	3.5620(13)	165.0
C22-H22O11#1	0.95	2.57	3.2324(13)	127.1
C24-H24O27#3	0.95	2.54	3.2496(14)	131.5

Table S9. Hydrogen bonds for 19070z [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x+1/2,y-1/2,z #3 -x+1,y,-z+3/2

REFERENCES

- ¹ APEX3, Bruker Analytical X-ray Systems, Madison, WI (2014).
- ² SADABS, Bruker Analytical X-ray Systems, Madison, WI (2014).
- ³ SAINT Bruker Analytical X-ray Systems, Madison, WI (2014).
- ⁴ SHELXTL 2013, Bruker Analytical X-Ray Systems, Madison, WI (**2013**); G. M. Sheldrick. A short history of SHELX. *Acta Cryst.* **2008**, *A64*, 112-122.