Supporting Information

DNA Hairpin-Templated Silver Nanoclusters: A Study on Stem Sequence

Yahui Guo,^{†‡} Fumiao Shen,[†] Yuliang Cheng,[†] Hang Yu,[†] Yunfei Xie,[†] Weirong Yao,[†] Renjun Pei,[§] He Qian[†] and Hung-Wing Li^{*,‡}

[†] State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

[‡] Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

§ CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,

Ruoshui Road, Suzhou 215123, China.

Corresponding author: H.W. Li (hwli@hkbu.edu.hk)

No.	Name	Sequence (5'-3')
1	H0	AAGCATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCATGCTT
2	6T-loop	AAGCATGCAACGTTCGATCGTTTTTTCGATCGAACGTTGCATGCTT
3	0%GC	AATTATTTAAATTATAAACCCCCCTTATTAAAATTTAAATAAT
4	10%GC	AATTATTTAAATTTTAATGCCCCCCGCATTAAAATTTAAATAATT
5	20%GC	AATTATTTAAATTTTAGCGCCCCCCGCGCTAAAATTTAAATAATT
6	30%GC	AATTATTTAAATTTCCGCGCCCCCCGCGCGGAAATTTAAATAATT
7	40%GC	AATTATTTAAATGGCCGCGCCCCCCGCGCGCGCCATTTAAATAATT
8	50%GC	AATTATTTAACGGGCCGCGCCCCCCCGCGCGGCCCGTTAAATAATT
9	60%GC	AATTATTTCGCGGGCCGCGCCCCCCGCGCGCGCGCGCGAAATAATT
10	70%GC	AATTATCCCGCGGGCCGCGCCCCCCGCGCGGGGCCCGCGGGGATAATT
11	80%GC	AATTCCCCCGCGGGCCGCGCCCCCCCGCGCGCGCGGGGGGAATT
12	90%GC	AAGGCCCCCGCGGGCCGCGCCCCCCGCGCGCGCGGGGGGCCTT
13	100%GC	GCGGCCCCGCGGGCCGCGCCCCCCGCGCGCGCGGGGGGCCGC
14	20AT	АААААААААААААААААААААААССССССТГГГГГГГГГГ
15	20AT-ds1	АААААААААААААААААААААССССССАААААААААААА
16	20AT-ds2	TTTTTTTTTTTTTTTCCCCCCTTTTTTTTTTTTTTTTTT
17	H0-ds1	AAGCATGCAACGTTCGATCGCCCCCCGCTAGCTTGCAACGTACGAA
18	H0-ds2	TTCGTACGTTGCAAGCTAGCCCCCCCGATCGAACGTTGCATGCTT
19	10%GC	AATTATTTAAATTTAATGCCCCCCGCATTAAAATTTAAATAATT
20	10%GC-1	AATTATTTAAATTTTAA <mark>GC</mark> ACCCCCTGCTTAAAATTTAAATAATT
21	10%GC-2	AATTATTTAAATTTTA <mark>GC</mark> AACCCCCCTT <mark>GC</mark> TAAAATTTAAATAATT
22	10%GC-3	AATTATTTAAATTTTGCTAACCCCCCTTAGCAAAATTTAAATAATT
23	10%GC-4	AATTATTTAAATTTGCATAACCCCCCTTATGCAAATTTAAATAATT
24	10%GC-9	AATTATTTAGCTTTTAATAACCCCCCTTATTAAAAGCTAAATAATT
25	10%GC-18	GCTTATTTAAATTTTAATAACCCCCCTTATTAAAATTTAAATAAGC
26	50%GC	AATTATTTAACGGGCCGCGCCCCCCCGCGCGGCCCGTTAAATAATT
27	50%GC-1	AATTATTTACGGGCCGCGCACCCCCTGCGCGGCCCGTAAATAATT
28	50%GC-5	AATTACGGGCCGCGCAATAACCCCCCTTATTGCGCGGCCCGTAATT
29	50%GC-10	CGGGCCGCGCATTTTAATAACCCCCCTTATTAAAATGCGCGGCCCG
30	НО	AAGCATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCATGCTT
31	H0-1	AGCATGCAACGTTCGATCGACCCCCCTCGATCGAACGTTGCATGCT
32	100%GC	
33	100%GC-1	
55	100/0001	
34	2AT-2GC×2	AATTATTTAAATTTCGATGCCCCCCGCATCGAAATTTAAATAATT
35	3AT-2GC×2	AATTATTTAAATTCGAATGCCCCCCGCATTCGAATTTAAATAATT
36	4AT-2GC×2	AATTATTTAAATCGTAATGCCCCCCGCATTACGATTTAAATAATT

Table S1. Names and sequences of the oligonucleotides used in this work.

37	2AT-2GC×3	AATTATTTAACGTTCGATGCCCCCCGCATCGAACGTTAAATAATT
38	3AT-2GC×3	AATTATTTCGATTCGAATGCCCCCCGCATTCGAATCGAA
39	4AT-2GC×3	AATTATCGAAATCGTAATGCCCCCCGCATTACGATTTCGATAATT
40	2AT-2GC×4	AATTATGCAACGTTCGATGCCCCCCCGCATCGAACGTTGCATAATT
41	3AT-2GC×4	AATGCTTTCGATTCGAATGCCCCCCCGCATTCGAATCGAAAGCATT
42	4AT-2GC×4	GCTTATCGAAATCGTAATGCCCCCCGCATTACGATTTCGATAAGC
43	2AT-3GC×2	AATTATTTAAATGGCAACGCCCCCCGCGTTGCCATTTAAATAATT
44	3AT-3GC×2	AATTATTTAAAGGCTAACGCCCCCCGCGTTAGCCTTTAAATAATT
45	4AT-3GC×2	AATTATTTAAGGCTTAACGCCCCCCCCGCGTTAAGCCTTAAATAATT
46	4GC×1	AATTATTTAAATTTTAGCGCCCCCCGCGCTAAAATTTAAATAATT
47	2GC×2	AATTATTTAAATTCGAATGCCCCCCGCATTCGAATTTAAATAATT
48	2GC×3	AATTATTTAACGTTCGATGCCCCCCCCCCGCATCGAACGTTAAATAATT
49	3GC×2	AATTATTTAAATGGCAACGCCCCCCGCGTTGCCATTTAAATAATT
50	2GC×4	AATTATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATAATT
51	4GC×2	AATTATTTAAGCCCTAGCGCCCCCCCCCGCGCTAGGGCTTAAATAATT
52	3GC×4	AACGCTTCGCATGGCAACGCCCCCCGCGTTGCCATGCGAAGCGTT
53	4GC×3	AATTGCGCAAGCCCTAGCGCCCCCCCCGCGCTAGGGCTTGCGCAATT
54	0%GC-stem5	AATAACCCCCCTTATT
55	0%GC-stem10	ATTTTAATAACCCCCCTTATTAAAAT
56	0%GC-stem15	TTTAAATTTTAATAACCCCCCTTATTAAAATTTAAA
57	0%GC-stem20	AATTATTTAAAATTTTAATAACCCCCCTTATTAAAATTTAAAATAAT
58	0%GC-stem25	TTATTAATTATTAAAATTTTAATAACCCCCCTTATTAAAATTTAAAAATTAATAA
59	0%GC-stem30	AATAATTATTAATTATTAAAATTTTAAAAATTTAAAAATTTAAAA
60	2GC-stem5	AATGCCCCCCGCATT
61	2GC-stem10	ATTTTAATGCCCCCCGCATTAAAAT
62	2GC-stem15	TTTAAATTTTAAT <mark>GCCCCCCGC</mark> ATTAAAATTTAAA
63	2GC(10%GC)-stem20	AATTATTTAAATTTTAATGCCCCCCGCATTAAAATTTAAATAATT
64	2GC-stem25	TTATTAATTATTTAAATTTTAAT <mark>GCCCCCCGC</mark> ATTAAAATTTAAATAATTAATAA
65	2GC-stem30	AATAATTATTAATTATTAAATTTTAATGCCCCCCGCATTAAAAATTTAAATAATTAAT
66	50%GC-stem8	TTCGATCGCCCCCCGATCGAA
67	50%GC-stem12	AACGTTCGATCGCCCCCCGATCGAACGTT
68	50%GC-stem16	ATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCAT
69	50%GC-stem20	AAGCATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCATGCTT
70	50%GC-stem24	AAGCAAGCATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCATGCTTGCT
71	50%GC-stem28	ATCGAAGCAAGCATGCAACGTTCGATCGCCCCCCGATCGAACGTTGCATGCTTGCT
72	6GC-stem16	ATTTAACGTTCGATGCCCCCCGCATCGAACGTTAAAT
73	8GC-stem20	AATTATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATAATT
74	10GC-stem24	TAATAACGATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATCGTTATTA
75	12GC-stem28	TAATAACGAACGATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATCGTTCGT

76	14GC-stem32	TAATATGCAACGAACGATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATCGTTCGT
		CATATTA
77	16GC-stem36	TAATTTCGATGCAACGAACGATGCAACGTTCGATGCCCCCCGCATCGAACGTTGCATCGTTC
		GTTGCATCGAAATTA

The secondary structures of DNAs listed in Table S1 were analyzed by an online software OligoAnalyzer (<u>https://sg.idtdna.com/calc/analyzer</u>), the specific parameters were set as follows: target type, DNA; sequence type, linear; oligonucleotide concentration, 5 μ M; [Na⁺] concentration, 10 mM; [Mg²⁺] concentration, 0 mM; dNTPs concentration, 0 mM; temperature, 25°C; maximum foldings, 20.

No.	Buffer	pН	λex (nm)	λem (nm)	References		
1	NH4Ac-HAc buffer	6.8	420	525 (green)	Microchim. Acta 2019, 186, 519.		
2	Tris-acetate buffer	7.0	480	580 (yellow)	Nucleic Acids Res. 2016, 44, e57.		
3	Phosphate buffer	7.0	490	590 (yellow)	Biosens. Bioelectron. 2014, 60, 351.		
4	Ammonium acetate	7.0	470	560 (yellow)	I Phys. Cham. C 2000, 113, 4220		
4	Annonium acciaic		590	660 (red)	<i>J. 1 hys. Chem. C. 2009</i> , <i>115</i> , 422 <i>9</i> .		
5	Tris-acetate buffer	7.0	480	590 (yellow)	Nanomaterials 2010 0 667		
5	ms-acctate buller		580	660 (red)	Nunomalerials 2019, 9, 007.		
6	Dhosphata buffar	7.0	514	575 (yellow)	Langmuir 2013 20 13066		
0	r nospitate butter		561	635 (red)	Langmuit 2015, 29, 15000.		
7	Phosphate buffer	7.4	490	576 (yellow)	Biosens. Bioelectron. 2016, 79, 411.		
8	HEPES buffer	7.6	520	620 (red)	Nanoscale 2013, 5, 2840.		
9	Tris buffer	8.0	560	650 (red)	Analyst 2017, 142, 1765.		

Table S2. Reported hairpin-AgNCs synthesized in different pH buffers.

Table S3. The wavelengths of fluorescence excitation and emission peaks, and corresponding intensities (FI) of the hairpin-AgNCs synthesized using stems of different GC content under pH 6.6/7.4, respectively.

	рН 6.6				рН 7.4			
	Peak 1 (yellow)		Peak 2 (red)		Peak 1 (yellow)		Peak 2 (red)	
	Ex/Em	FI	Ex/Em	FI	Ex/Em	FI	Ex/Em	FI
	(nm)		(nm)		(nm)		(nm)	
0%GC	485/595	88031.3			485/595	38653.5		
10%GC	530/595	143030			530/595	19849.4		
20%GC	530/595	72792.4			535/595	7254.5		
30%GC	530/595	56973.8	625/710	6546.7	565/660	6416		
40%GC	530/595	95487.2	600/685	10634.1			600/680	12500.5
50%GC	530/595	87248.9	600/680	11629.1	540/630	7535.9	595/680	7159.3
60%GC	530/595	94385.4	595/680	10537.7	525/600	7719.9	595/680	7216.3
70%GC	530/595	77718.2	595/680	10227.1	525/600	5589	595/680	5746.9
80%GC	530/595	51667.3	600/680	12306.7	525/600	4725.7	595/680	5001.7
90%GC	530/595	27598.2	590/675	12387.2			595/680	5383.2
100%GC	530/595	43448.3	605/685	15108.5			600.680	5967.3

Fig. S1. Three-dimensional fluorescence spectra of H0-AgNCs synthesized at different pH in sodium phosphate buffer (PBS).

Fig. S2. Three-dimensional fluorescence spectra of H0-AgNCs synthesized at different pH in sodium citrate buffer (SCB).

Fig. S3. Three-dimensional fluorescence spectra of H0-AgNCs synthesized at different pH in ammonium acetate buffer (AAB).

Fig. S4. Three-dimensional fluorescence spectra of H0-AgNCs synthesized with different concentration ratios of [DNA]:[AgNO₃]. The ratios of [AgNO₃]:[NaBH₄] remained constant (1:1) in all these experiments.

Fig. S5. Three-dimensional fluorescence spectra of H0-AgNCs synthesized with different concentration ratio of [AgNO₃]:[NaBH₄]. The ratios of [DNA]:[AgNO₃] remained constant (1:9) in all these experiments.

Fig. S6. Three-dimensional fluorescence spectra of hairpin-AgNCs synthesized with different GC content in stem sequence (0%-100%GC, Table S1. No. 3-13). Buffer pH=6.6.

Fig. S7. Three-dimensional fluorescence spectra of hairpin-AgNCs synthesized with different GC content in stem sequence (0%-100%GC, Table S1. No. 3-13). Buffer pH=7.4.

Fig. S8. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 0% GC content (sequence No.3, Table S1.) at different pH (5.8, 6.2, 6.6, 7.0, 7.4 and 8.0).

Fig. S9. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 10% GC content (sequence No.4, Table S1.) at different pH (5.8, 6.2, 6.6, 7.0, 7.4 and 8.0).

Fig. S10. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 50% GC content (sequence No.8, Table S1.) at different pH (5.8, 6.2, 6.6, 7.0, 7.4 and 8.0).

Fig. S11. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 0% GC stem sequence (No.3, Table S1) at different ratios of [DNA]: [AgNO₃].

Fig. S12. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 10%GC stem sequence (No.4, Table S1) at different ratios of [DNA]:[AgNO₃].

Fig. S13. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 50% GC stem sequence (No.8, Table S1) at different ratios of [DNA]:[AgNO₃].

Fig. S14. Three-dimensional fluorescence spectra of the hairpin-AgNCs synthesized with 100%GC stem sequence (No.13, Table S1) at different ratios of [DNA]:[AgNO₃].

Fig. S15. The fluorescence intensities of hairpin-AgNCs (with different GC content in stem) synthesized using different ratios of [DNA]:[AgNO₃].

Fig. S16. Respective TEM images of (a) 0%GC-AgNCs and (b) 100%GC-AgNCs.

Fig. S17. The collected three-dimensional fluorescence spectrum of the AgNCs synthesized with the stem dsDNA of H0-dsDNA (without loop structure).

Fig. S18. Agarose gel electrophoresis of the DNAs with sequences (No. 1&3-13) listed in Table S1. Lane1: H0-DNA; Lane2-12: hairpin DNAs with stems containing 0%GC-100%GC base pairs.

Fig. S19. (a) Three-dimensional fluorescence spectrum of 20AT-AgNCs. (b) Three-dimensional fluorescence spectrum of 20ATdimer-AgNCs (20ATdimer = 20AT-ds1 & 20AT-ds2). (c) Three-dimensional fluorescence spectrum of H0-AgNCs. (d) Three-dimensional fluorescence spectrum of H0dimer-AgNCs (H0dimer = H0-ds1 & H0-ds2). (e) Image obtained from the agarose gel electrophoresis. Lane1: 20AT; Lane2: 20ATdimer; Lane3: H0dimer.

Fig. S20. Three-dimensional fluorescence spectra of the 10%GC-hairpin-AgNCs synthesized using stems with two GC base pairs distributed in different distances towards loop. Sequences were listed in Table S1 (No. 19-25).

Fig. S21. Three-dimensional fluorescence spectra of the 50%GC-hairpin-AgNCs synthesized using stems with ten GC base pairs distributed in different distances towards loop. Sequences were listed in Table S1 (No. 26-29).

Fig. S22. (a/b) Three-dimensional fluorescence spectra of the H0-AgNCs synthesized using stems without/with 1 AT base pair between loop and GC base pairs. (c/d) Three-dimensional fluorescence spectra of the 50%GC-hairpin-AgNCs synthesized using stems without/with 1 AT base pair between loop and GC base pairs. (e/f) Three-dimensional fluorescence spectra of the 100%GC-hairpin-AgNCs synthesized using stems without/with 1 AT base pair between loop and GC base pairs. (e/f) Three-dimensional fluorescence spectra of the 100%GC-hairpin-AgNCs synthesized using stems without/with 1 AT base pair between loop and GC base pairs. Sequences were listed in Table S1 (No. 26-27, 30-33).

Fig. S23. (a/b/c) Three-dimensional fluorescence spectra of the hairpin-AgNCs with two GC units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 34-36 in Table S1). (d/e/f) Three-dimensional fluorescence spectra of the hairpin-AgNCs with three GC units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 37-39 in Table S1). (g/h/i) Three-dimensional fluorescence spectra of the hairpin-AgNCs with four GC units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 37-39 in Table S1). (g/h/i) Three-dimensional fluorescence spectra of the hairpin-AgNCs with four GC units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 40-42 in Table S1). (j/k/l) Three-dimensional fluorescence spectra of the hairpin-AgNCs with two GCG units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 40-42 in Table S1). (j/k/l) Three-dimensional fluorescence spectra of the hairpin-AgNCs with two GCG units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 40-42 in Table S1).

Fig. S24. The fluorescence intensities of the hairpin-AgNCs with different GC units in stem separated by 2/3/4 AT base pairs respectively (the sequence No. 34-45 in Table S1).

Fig. S25. Three-dimensional fluorescence spectra of hairpin-AgNCs using different stem designed based on different GC unit combinations.

Fig. S26. The fluorescence intensities of the hairpin-AgNCs using different stem designed based on different GC unit combinations.

Fig. S27. The three-dimensional fluorescence spectra of the hairpin-AgNCs using stems of different length (without GC base pairs in stem sequence).

Fig. S28. The three-dimensional fluorescence spectra of the hairpin-AgNCs using stems of different length (with two GC base pairs in stem sequence).

Fig. S29. The three-dimensional fluorescence spectra of the hairpin-AgNCs using stems of different length (with 50% content of GC base pairs in stem sequence).

Fig. S30. The melting temperatures (Tm) of 0%GC-stemX(5-30), 2GC-stemX(5-30), 50%GC-stemX(8-28) and *x*GC-stemX(16-36) hairpins calculated by the OligoAnalyzer.

Fig. S31. The fluorescence intensities of the hairpin-AgNCs using stems of different lengths (with increasing GC base pairs in stem sequence).

Fig. S32. The predicted structure of 0%GC-stem25 analyzed by the OligoAnalyzer.

Fig. S33. The predicted structure of 2GC-stem25 analyzed by the OligoAnalyzer.

Fig. S34. The predicted structure of 50%GC-stem24 analyzed by the OligoAnalyzer.

Fig. S35. The predicted structure of 10GC-stem24 analyzed by the OligoAnalyzer.