In-situ Measurement of 3D Crystal Size Distribution by Double-View Image Analysis with Case Study on L-glutamic Acid Crystallization

Yan Huo^{*a,b,c*}, Tao Liu^{*a,b,**}, Yixuan Yang^{*a,b*}, Cai Y. Ma^{*d*}, Xue Z. Wang^{*d, e*}, Xiongwei Ni^{*f*}

^aKey Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian 116024, China

^bInstitute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China
^cCollege of Information Engineering, Shenyang University, Shenyang 110044, China
^dInstitute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
^eSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou

510006, China

^fSchool of Engineering and Physical Science, Heriot-Watt University, Edinburgh, UK

Supporting Information

Derivation of Eq.(10)

From Fig.4a, the following two equations stand according to the common property of two similar triangles,

$$\frac{Z - f_{\rm c}}{Z} = \frac{b_{\rm l} - a_{\rm l}}{b_{\rm l}}$$
(A1)

$$\frac{Z - f_{\rm c}}{Z} = \frac{b_2 - a_2}{b_2}$$
(A2)

where $f_c = f \cos \theta$ and $b_1 + b_2 = b$.

The above equations can be equivalently transformed into

$$\frac{b_1 - a_1}{Z - f_c} = \frac{b_1}{Z} \tag{A3}$$

$$\frac{b_2 - a_2}{Z - f_c} = \frac{b_2}{Z}$$
(A4)

Since $b_1 + b_2 = b$, it can be derived that

$$Z = \frac{bf_{\rm c}}{a_1 + a_2} \tag{A5}$$

Fig.4b shows the geometric diagram in the left view of camera. According to the sine law, there follows

$$\frac{\sin(90+\tau_1)}{m_1} = \frac{\sin(90-\theta-\tau_1)}{x_1}$$
(A6)

where $n_1 = f \sin \theta$.

It can be derived from (A6) that

$$m_{1} = \frac{x_{1}\sin(90 + \tau_{1})}{\sin(90 - \theta - \tau_{1})}$$
(A7)

It can be seen from Fig.4b that

$$a_1 = m_1 + n_1 \tag{A8}$$

Since Fig.4c shows the geometric diagram in the right view of camera, it follows from the sine law that

$$\frac{\sin(90 - \tau_{\rm r})}{m_{\rm r}} = \frac{\sin(90 - \theta + \tau_{\rm r})}{x_{\rm r}}$$
(A9)

where $n_{\rm r} = f \sin \theta - m_{\rm r}$.

It can be derived from (A9) that

$$m_{\rm r} = \frac{x_{\rm r} \sin(90 - \tau_{\rm r})}{\sin(90 - \theta - \tau_{\rm r})}$$
(A10)

It can be seen from Fig.4c that

$$a_2 = n_{\rm r} \tag{A11}$$

Therefore,

$$a_1 + a_2 = m_1 + n_1 + n_r \tag{A12}$$

By substituting (A12) into (A5), it yields

$$Z = \frac{bf \cos \theta}{2f \sin \theta + \frac{x_1 \sin(90 + \tau_1)}{\sin(90 - \theta - \tau_1)} + \frac{x_r \sin(90 - \tau_r)}{\sin(90 - \theta + \tau_r)}}$$
(A13)

which may be rewritten as

$$Z = \frac{bf \cos \theta}{2f \sin \theta + \frac{x_1 \cos \tau_1}{\cos(\theta + \tau_1)} - \frac{x_r \cos \tau_r}{\cos(\theta - \tau_r)}}$$
(A14)

where $\tan \tau_1 = x_1 / f$, $x_1 = \frac{\gamma}{\kappa} |u_1 - L/2|$, $\tan \tau_r = x_r / f$, and $x_r = \frac{\gamma}{\kappa} |u_r - L/2|$.