In-situ Measurement of 3D Crystal Size Distribution by DoubleView Image Analysis with Case Study on L-glutamic Acid Crystallization

Yan Huo ${ }^{a, b, c}$, Tao Liu $^{a, b, *}$, Yixuan Yang ${ }^{a, b}$, Cai Y. Ma ${ }^{d}$, Xue Z. Wang ${ }^{d, e}$, Xiongwei $\mathbf{N i}^{f}$
${ }^{a}$ Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian 116024, China
${ }^{b}$ Institute of Advanced Control Technology, Dalian University of Technology, Dalian 116024, China ${ }^{c}$ College of Information Engineering, Shenyang University, Shenyang 110044, China
${ }^{d}$ Institute of Particle Science and Engineering, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
${ }^{e}$ School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510006, China
${ }^{f}$ School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, UK

Supporting Information

Derivation of Eq.(10)

From Fig.4a, the following two equations stand according to the common property of two similar triangles,

$$
\begin{align*}
& \frac{Z-f_{\mathrm{c}}}{Z}=\frac{b_{1}-a_{1}}{b_{1}} \tag{A1}\\
& \frac{Z-f_{\mathrm{c}}}{Z}=\frac{b_{2}-a_{2}}{b_{2}} \tag{A2}
\end{align*}
$$

where $f_{\mathrm{c}}=f \cos \theta$ and $b_{1}+b_{2}=b$.
The above equations can be equivalently transformed into

$$
\begin{align*}
& \frac{b_{1}-a_{1}}{Z-f_{c}}=\frac{b_{1}}{Z} \tag{A3}\\
& \frac{b_{2}-a_{2}}{Z-f_{c}}=\frac{b_{2}}{Z} \tag{A4}
\end{align*}
$$

Since $b_{1}+b_{2}=b$, it can be derived that

$$
\begin{equation*}
Z=\frac{b f_{c}}{a_{1}+a_{2}} \tag{A5}
\end{equation*}
$$

Fig.4b shows the geometric diagram in the left view of camera. According to the sine law, there follows

$$
\begin{equation*}
\frac{\sin \left(90+\tau_{1}\right)}{m_{1}}=\frac{\sin \left(90-\theta-\tau_{1}\right)}{x_{1}} \tag{A6}
\end{equation*}
$$

where $n_{1}=f \sin \theta$.
It can be derived from (A6) that

$$
\begin{equation*}
m_{1}=\frac{x_{1} \sin \left(90+\tau_{1}\right)}{\sin \left(90-\theta-\tau_{1}\right)} \tag{A7}
\end{equation*}
$$

It can be seen from Fig.4b that

$$
\begin{equation*}
a_{1}=m_{1}+n_{1} \tag{A8}
\end{equation*}
$$

Since Fig.4c shows the geometric diagram in the right view of camera, it follows from the sine law that

$$
\begin{equation*}
\frac{\sin \left(90-\tau_{\mathrm{r}}\right)}{m_{\mathrm{r}}}=\frac{\sin \left(90-\theta+\tau_{\mathrm{r}}\right)}{x_{\mathrm{r}}} \tag{A9}
\end{equation*}
$$

where $n_{\mathrm{r}}=f \sin \theta-m_{\mathrm{r}}$.
It can be derived from (A9) that

$$
\begin{equation*}
m_{\mathrm{r}}=\frac{x_{\mathrm{r}} \sin \left(90-\tau_{\mathrm{r}}\right)}{\sin \left(90-\theta-\tau_{\mathrm{r}}\right)} \tag{A10}
\end{equation*}
$$

It can be seen from Fig.4c that

$$
\begin{equation*}
a_{2}=n_{\mathrm{r}} \tag{A11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
a_{1}+a_{2}=m_{1}+n_{1}+n_{\mathrm{r}} \tag{A12}
\end{equation*}
$$

By substituting (A12) into (A5), it yields

$$
\begin{equation*}
Z=\frac{b f \cos \theta}{2 f \sin \theta+\frac{x_{1} \sin \left(90+\tau_{1}\right)}{\sin \left(90-\theta-\tau_{1}\right)}+\frac{x_{\mathrm{r}} \sin \left(90-\tau_{\mathrm{r}}\right)}{\sin \left(90-\theta+\tau_{\mathrm{r}}\right)}} \tag{A13}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
Z=\frac{b f \cos \theta}{2 f \sin \theta+\frac{x_{1} \cos \tau_{1}}{\cos \left(\theta+\tau_{1}\right)}-\frac{x_{\mathrm{r}} \cos \tau_{\mathrm{r}}}{\cos \left(\theta-\tau_{\mathrm{r}}\right)}} \tag{A14}
\end{equation*}
$$

where $\tan \tau_{1}=x_{1} / f, x_{1}=\frac{\gamma}{\kappa}\left|u_{1}-L / 2\right|, \tan \tau_{\mathrm{r}}=x_{\mathrm{r}} / f$, and $x_{\mathrm{r}}=\frac{\gamma}{\kappa}\left|u_{\mathrm{r}}-L / 2\right|$.

