## Supplementary Information for Extensive Quantum Chemistry Study of Neutral and Charged C<sub>4</sub>N Chains. An Attempt to Aid Astronomical Observations

Ioan Bâldea\*,†,‡

Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany, and Institute of Space Sciences, National Institute of Lasers, Plasma and Radiation Physics, RO 077125, Bucharest-Măgurele, Romania

E-mail: ioan.baldea@pci.uni-heidelberg.de

<sup>\*</sup>To whom correspondence should be addressed

<sup>&</sup>lt;sup>†</sup>Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany

<sup>&</sup>lt;sup>‡</sup>Institute of Space Sciences, National Institute of Lasers, Plasma and Radiation Physics, RO 077125, Bucharest-Măgurele, Romania



Figure S1: Bond lengths (in angstrom) of neutral C<sub>4</sub>N, C<sub>4</sub>N, and C<sub>5</sub>N chains in their electronic ground state.



Figure S2: Wiberg bond indices of neutral C<sub>4</sub>N, C<sub>4</sub>N, and C<sub>5</sub>N chains in their electronic ground state.

Table S1: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (most stable)  $C_4 N^0$  neutral doublet ( $\tilde{X}^2 \Pi$ ).

| Atom  | Х        | Y        | Ζ           | charge   | valence |
|-------|----------|----------|-------------|----------|---------|
| $C_1$ | 0.000000 | 0.000000 | 2.65410363  | 0.27537  | 1.6424  |
| $C_2$ | 0.000000 | 0.000000 | 1.33769693  | -0.34620 | 3.8239  |
| $C_3$ | 0.000000 | 0.000000 | 0.08416284  | 0.09058  | 3.6263  |
| $C_4$ | 0.000000 | 0.000000 | -1.25284849 | 0.17730  | 3.9745  |
| Ν     | 0.000000 | 0.000000 | -2.41981278 | -0.19705 | 2.9459  |



Figure S3: Wiberg valencies of neutral  $\rm C_4N,\, C_4N,$  and  $\rm C_5N$  chains in their electronic ground state.



Figure S4: Atomic charges of neutral  $C_4N$ ,  $C_4N$ , and  $C_5N$  chains in their electronic ground state.



Figure S5: HOMO of neutral doublet  $C_3N^0$ ,  $C_4N^0$ , and  $C_5N^0$  chains.



Figure S6: LUMO of neutral doublet  $\mathrm{C}_3\mathrm{N}^0,\,\mathrm{C}_4\mathrm{N}^0,$  and  $\mathrm{C}_5\mathrm{N}^0$  chains.



Figure S7: Changes with respect to the neutral doublet  $C_4 N^0$  of several molecular properties: (a) bond lengths (in angstrom), (b) Wiberg bond order indices, (c) Wiberg valencies and (d) atomic charges.

Table S2: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable)  $C_4 N^0$  neutral quartet ( $\tilde{a}^4 \Sigma^-$ ).

| Atom  | Х        | Y        | Ζ           | charge   | valence |
|-------|----------|----------|-------------|----------|---------|
| $C_1$ | 0.000000 | 0.000000 | -2.61882889 | 0.38999  | 1.5361  |
| $C_2$ | 0.000000 | 0.000000 | -1.36043777 | -0.25338 | 3.9155  |
| $C_3$ | 0.000000 | 0.000000 | -0.08294868 | -0.08296 | 3.5336  |
| $C_4$ | 0.000000 | 0.000000 | 1.24266035  | 0.21504  | 3.9845  |
| Ν     | 0.000000 | 0.000000 | 2.41676142  | -0.26869 | 2.9311  |

Table S3: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (most stable) bent  $C_4N^-$  singlet  $(^1A')$ .

| Atom  | Х         | Y         | Ζ        | charge   | valence |
|-------|-----------|-----------|----------|----------|---------|
| $C_1$ | 2.452143  | -0.396162 | 0.000000 | -0.12258 | 2.4933  |
| $C_2$ | 1.261801  | 0.069056  | 0.000000 | -0.46722 | 3.9608  |
| $C_3$ | 0.078147  | 0.674522  | 0.000000 | -0.20040 | 3.3211  |
| $C_4$ | -1.153197 | 0.041285  | 0.000000 | 0.26342  | 3.9784  |
| N     | -2.261910 | -0.333173 | 0.000000 | -0.47322 | 2.9340  |



Figure S8: Changes with respect to the neutral doublet  $C_4 N^0$  of several molecular properties: (a) bond lengths (in angstrom), (b) Wiberg bond order indices, (c) Wiberg valencies and (d) atomic charges.

Table S4: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable, nearly) linear  $C_4 N^-$  singlet  $(^{1}\Sigma^{-})$ .

| Atom  | Х         | Y        | Ζ        | charge   | valence |
|-------|-----------|----------|----------|----------|---------|
| $C_1$ | 5.057640  | 0.060822 | 0.000000 | -0.16047 | 2.4257  |
| $C_2$ | 3.768464  | 0.050142 | 0.000000 | -0.39695 | 3.9445  |
| $C_3$ | 2.475903  | 0.039685 | 0.000000 | -0.15945 | 3.6447  |
| $C_4$ | 1.158166  | 0.029423 | 0.000000 | 0.20914  | 3.9811  |
| Ν     | -0.030173 | 0.019929 | 0.000000 | -0.49227 | 2.8156  |

Table S5: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the most stable linear  $C_4 N^-$  triplet  $({}^3\Sigma^-)$ .

| Atom             | Х        | Y        | Z           | charge   | valence |
|------------------|----------|----------|-------------|----------|---------|
| $C_1$            | 0.000000 | 0.000000 | -2.65415168 | -0.17449 | 1.9735  |
| $C_2$            | 0.000000 | 0.000000 | -1.36306952 | -0.32969 | 3.8275  |
| $\overline{C_3}$ | 0.000000 | 0.000000 | -0.07142727 | -0.24430 | 3.2586  |
| $\tilde{C_4}$    | 0.000000 | 0.000000 | 1.24775715  | 0.27001  | 3.9430  |
| N                | 0.000000 | 0.000000 | 2.43504970  | -0.52154 | 2.7338  |

Table S6: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the linear singlet  $C_4 N^+$  cation  $({}^{1}\Sigma^+)$ .

| Atom          | Х        | Y        | Ζ           | charge   | valence |
|---------------|----------|----------|-------------|----------|---------|
| $C_1$         | 0.000000 | 0.000000 | 2.66019710  | 0.85764  | 1.6873  |
| $C_2$         | 0.000000 | 0.000000 | 1.32621289  | -0.58628 | 3.8834  |
| $C_3$         | 0.000000 | 0.000000 | 0.08794830  | 0.57113  | 3.8399  |
| $\tilde{C_4}$ | 0.000000 | 0.000000 | -1.25330642 | 0.03453  | 3.9900  |
| N             | 0.000000 | 0.000000 | -2.41804446 | 0.12297  | 3.0149  |

Table S7: Cartesian coordinates (in angstrom), natural charges and Wiberg valencies of the atoms of the (metastable) linear triplet  $C_4N^+$  cation  $(^{3}\Sigma^+)$ .

| Atom | Х        | Y        | Ζ           | charge   | valence |
|------|----------|----------|-------------|----------|---------|
| C1   | 0.000000 | 0.000000 | 2.61065996  | 0.81831  | 1.9491  |
| C2   | 0.000000 | 0.000000 | 1.35771105  | -0.37213 | 3.8271  |
| C3   | 0.000000 | 0.000000 | 0.08308407  | 0.39549  | 3.4954  |
| C4   | 0.000000 | 0.000000 | -1.23722188 | 0.06271  | 3.9643  |
| Ν    | 0.000000 | 0.000000 | -2.41219988 | 0.09561  | 2.8723  |

Table S8: Bond metric data for C<sub>4</sub>N chains at geometries optimized using several exchangecorrelation functionals and basis sets. Bond lengths l between atoms XY (in angstrom), angles  $\alpha$  between atoms  $\widehat{XYZ}$  (in degrees). Whenever angles between adjacent bonds are indicated, the geometries were optimized without imposing symmetry constraints.

| Species                | Method                        | Property    | $C_1C_2$ | $\widehat{\mathbf{C_1C_2C_3}}$ | $C_2C_3$ | $\widehat{\mathbf{C}_2\mathbf{C}_3\mathbf{C}_4}$ | $C_3C_4$ | $\widehat{C_3C_4N}$ | $C_4N$ |
|------------------------|-------------------------------|-------------|----------|--------------------------------|----------|--------------------------------------------------|----------|---------------------|--------|
| bent $C_4 N^-$ singlet | RB3LYP/6-311++G(3df, 3pd)     | $l, \alpha$ | 1.2780   | 174.3                          | 1.3295   | 125.7                                            | 1.3846   | 171.4               | 1.1702 |
| *                      | RPBE0/6-311++G(3df, 3pd)      |             | 1.2792   | 174.3                          | 1.3287   | 125.0                                            | 1.3847   | 171.6               | 1.1688 |
| $C_4 N^-$ triplet      | UB3LYP/6-311++G(3df, 3pd)     | $l, \alpha$ | 1.2912   | 179.8                          | 1.2917   | 178.7                                            | 1.3193   | 180.0               | 1.1874 |
| -                      | UB3LYP/aug-cc-pVTZ            |             | 1.2913   |                                | 1.2920   |                                                  | 1.3197   |                     | 1.1874 |
|                        | UPBE0/6-311++G(3df, 3pd)      |             | 1.2938   | 179.8                          | 1.2903   | 178.7                                            | 1.3209   | 180.0               | 1.1849 |
|                        | UM06-2X/6-311++G(3df, 3pd)    |             | 1.2935   |                                | 1.2877   |                                                  | 1.3300   |                     | 1.1774 |
|                        | UB2GP-PLYP/6-311++G(3df, 3pd) |             | 1.2924   |                                | 1.2862   |                                                  | 1.3293   |                     | 1.1781 |
|                        | ROCCSD(T)/aug-cc-PVTZ         |             | 1.3040   |                                | 1.3027   |                                                  | 1.3343   |                     | 1.1944 |
| _                      |                               |             |          |                                |          |                                                  |          |                     |        |
| $C_4 N^0$ doublet      | UB3LYP/6-311++G(3df, 3pd)     | $l, \alpha$ | 1.3165   | 179.8                          | 1.2536   | 178.8                                            | 1.3371   | 180.0               | 1.1670 |
| *                      | UB3LYP/aug-cc-pVTZ            |             | 1.3169   |                                | 1.2537   |                                                  | 1.3377   |                     | 1.1671 |
|                        | UPBE0/6-311++G(3df, 3pd)      |             | 1.3193   | 179.8                          | 1.2522   | 178.8                                            | 1.3386   | 180.0               | 1.1653 |
|                        | UB2GP-PLYP/6-311++G(3df, 3pd) |             | 1.3258   |                                | 1.2330   |                                                  | 1.3594   |                     | 1.1539 |
|                        | ROCCSD(T)/aug-cc-PVTZ         |             | 1.3357   |                                | 1.2594   |                                                  | 1.3581   |                     | 1.1755 |
|                        |                               |             |          |                                |          |                                                  |          |                     |        |
| $C_A N^0$ quartet      | UB3LYP/6-311++G(3df, 3pd)     | $l, \alpha$ | 1.2585   | 179.9                          | 1.2776   | 178.8                                            | 1.3257   | 179.9               | 1.1742 |
| -                      | UB3LYP/aug-cc-pVTZ            |             | 1.2585   |                                | 1.2777   |                                                  | 1.3262   |                     | 1.1742 |
|                        | UPBE0/6-311++G(3df, 3pd)      |             | 1.2626   |                                | 1.2735   |                                                  | 1.3289   |                     | 1.1717 |
|                        |                               |             |          |                                |          |                                                  |          |                     |        |
| $C_4 N^+$ singlet      | RB3LYP/6-311++G(3df, 3pd)     | $l, \alpha$ | 1.3343   | 178.8                          | 1.2383   | 179.7                                            | 1.3413   | 179.6               | 1.1648 |
| 4 0                    | RPBE0/6-311++G(3df, 3pd)      |             | 1.3361   | 178.7                          | 1.2374   | 179.6                                            | 1.3421   | 179.7               | 1.1636 |
|                        | B2GP-PLYP/6-311++G(3df, 3pd)  |             | 1.3326   |                                | 1.2459   |                                                  | 1.3407   |                     | 1.1736 |
|                        | RCCSD(T)/aug-cc-PVTZ          |             | 1.3343   |                                | 1.2383   |                                                  | 1.3413   |                     | 1.1648 |
|                        |                               |             |          |                                |          |                                                  |          |                     |        |
| $C_4 N^+$ triplet      | UB3LYP/6-311++G(3df, 3pd)     |             | 1.2531   | 179.8                          | 1.2747   | 178.9                                            | 1.3204   | 179.7               | 1.1751 |
| 4 *                    | UPBE0/6-311++G(3df, 3pd)      |             | 1.2564   |                                | 1.2722   |                                                  | 1.3216   |                     | 1.1737 |



Figure S9: Geometries of singlet and triplet  $HC_4N$  chains (left and right panels, respectively) investigated in the present paper.

Table S9: Natural charges and Wiberg valencies of the atoms of the bent stable  $HC_4N$  (second and third columns) and  $C_4N^-$  (fourth and fifth columns) singlets.

| Atom  | charge   | valence | charge   | valence |
|-------|----------|---------|----------|---------|
| Н     | 0.23992  | 0.9448  |          |         |
| $C_1$ | -0.02018 | 3.6818  | -0.12258 | 2.4933  |
| $C_2$ | -0.19260 | 3.9373  | -0.46722 | 3.9608  |
| $C_3$ | 0.06473  | 3.0972  | -0.20040 | 3.3211  |
| $C_4$ | 0.15035  | 3.9731  | 0.26342  | 3.9784  |
| Ν     | -0.24222 | 2.9193  | -0.47322 | 2.9340  |

Table S10: Natural charges and Wiberg valencies of the atoms of the stable  $HC_4N$  (second and third columns) and  $C_4N^-$  (fourth and fifth columns) triplets.

|       | -        | ,       |          | 1       |
|-------|----------|---------|----------|---------|
| Atom  | charge   | valence | charge   | valence |
| Н     | 0.24010  | 0.9448  |          |         |
| $C_1$ | -0.06097 | 3.4399  | -0.17449 | 1.9735  |
| $C_2$ | -0.21113 | 3.9731  | -0.32969 | 3.8275  |
| $C_3$ | 0.16184  | 2.8127  | -0.24430 | 3.2586  |
| $C_4$ | 0.14022  | 3.9897  | 0.27001  | 3.9430  |
| Ν     | -0.27006 | 2.7173  | -0.52154 | 2.7338  |



Figure S10: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of the isoelectronic  $HC_4N$  and  $C_4N^-$  singlet bent chains considered in this paper.

Table S11: Values of the vertical and adiabatic doublet-quartet splitting  $(\Delta_{DQ}^0 (\mathbf{R}_{D,Q}^0) \equiv \mathcal{E}_Q^0 (\mathbf{R}_{D,Q}^0) - \mathcal{E}_{DE}^0 (\mathbf{R}_{D,Q}^0) - \mathcal{E}_D^0 (\mathbf{R}_Q^0) - \mathcal{E}_D^0 (\mathbf{R}_D^0)$ , respectively) computed without and with corrections due to zero point motion at geometries  $(\mathbf{R}_x^0, x = D, Q)$  optimized using the largest Pople basis sets 6-311++G(3df, 3pd) and several exchange-correlation functionals.

|                                                 |                          | B3LYP            | PBE0             | M06-2X           |
|-------------------------------------------------|--------------------------|------------------|------------------|------------------|
| $\Delta_{DQ}^{0}\left(\mathbf{R}_{D}^{0} ight)$ | uncorrected              | 1.167            | 0.921            | 0.979            |
| ·                                               | corrected                | 1.182            | 0.946            | 0.971            |
| $\Delta_{DQ}^{0}\left(\mathbf{R}_{Q}^{0} ight)$ | uncorrected<br>corrected | $1.062 \\ 1.076$ | $0.742 \\ 0.766$ | $0.777 \\ 0.770$ |
| $\Delta_{DQ}^{0,ad}$                            | uncorrected              | $1.167 \\ 1.182$ | $0.839 \\ 0.864$ | 0.889<br>0.881   |



Figure S11: (a) Bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges of  $HC_4N$  and  $C_4N^-$  triplet chains considered in this paper.

Table S12: Values of the vertical  $(\Delta_{bS,T}^{-}(\mathbf{R}_{T}^{-}) \equiv \mathcal{E}_{T}^{-}(\mathbf{R}_{T}^{-}) - \mathcal{E}_{bS}^{-}(\mathbf{R}_{T}^{-}) \Delta_{bS,T}^{-}(\mathbf{R}_{bS}^{-}) \equiv \mathcal{E}_{T}^{-}(\mathbf{R}_{bS}^{-}) - \mathcal{E}_{bS}^{-}(\mathbf{R}_{bS}^{-}) \Delta_{lS,T}^{-}(\mathbf{R}_{lS}^{-}) \equiv \mathcal{E}_{T}^{-}(\mathbf{R}_{lS}^{-}) - \mathcal{E}_{lS}^{-}(\mathbf{R}_{lS}^{-}))$  and adiabatic singlet-triplet splitting computed without and with corrections due to zero point motion using geometries  $(\mathbf{R}_{x}^{-}, x = T, bS, lS)$  optimized using the largest Pople basis sets 6-311++G(3df, 3pd) and several exchange-correlation functionals.

|                                                      |                          | B3LYP            | PBE0             | M06-2X           |
|------------------------------------------------------|--------------------------|------------------|------------------|------------------|
| $-\Delta_{bS,T}^{-}\left(\mathbf{R}_{T}^{-}\right)$  | uncorrected              | 0.785            | 0.917            | 0.615            |
| ,                                                    | corrected                | 0.791            | 0.923            | 0.615            |
| $-\Delta_{bS,T}^{-}\left(\mathbf{R}_{bS}^{-}\right)$ | uncorrected<br>corrected | $0.103 \\ 0.109$ | $0.224 \\ 0.230$ | -0.013<br>-0.013 |
| $-\Delta_{bS,T}^{-,ad}$                              | uncorrected              | 0.527            | 0.661            | 0.503            |
|                                                      | corrected                | 0.533            | 0.667            | 0.503            |



Figure S12: Differences between several molecular properties of the isoelectronic  $HC_4N$  and  $C_4N^-$  singlet bent chains considered in this paper: (a) bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges.

Table S13: Values of adiabatic anion singlet-triplet splittings obtained within unrestricted ab initio methods with zero-point motion corrections. Values in italics are deduced from Pascoli and Lavendy<sup>19</sup>.

| Method                   | Basis set          | $-\Delta_{T,bS}^{-,ad}$ | $-\Delta_{T,lS}^{-,ad}$ |
|--------------------------|--------------------|-------------------------|-------------------------|
| B3LYP                    | 6-311G*            | 0.57                    | 0.81                    |
| B3LYP                    | aug-cc-pVTZ        | 0.53                    | 0.78                    |
| B3LYP                    | 6-311++G(3df, 3pd) | 0.533                   | 0.791                   |
|                          |                    |                         |                         |
| QCISD                    | $6-311G^{*}$       | 0.40                    | 0.87                    |
| QCISD                    | 6-311++G(3df, 3pd) | 0.374                   | 0.824                   |
|                          |                    |                         |                         |
| QCISD(T)                 | $6-311G^{*}$       | 0.27                    | 0.72                    |
| QCISD(T)                 | 6-311++G(3df, 3pd) | 0.243                   | 0.671                   |
|                          |                    |                         |                         |
| $\operatorname{CCSD}$    | $6-311G^{*}$       | 0.39                    | 0.87                    |
| CCSD                     | 6-311++G(3df, 3pd) | 0.367                   | 0.822                   |
|                          |                    |                         |                         |
| $\operatorname{CCSD}(T)$ | $6-311G^{*}$       | 0.25                    | 0.71                    |
| $\operatorname{CCSD}(T)$ | 6-311++G(3df, 3pd) | 0.234                   | 0.653                   |



Figure S13: Differences between several molecular properties of the isoelectronic  $HC_4N$  and  $C_4N^-$  linear triplet chains considered in this paper: (a) bond lengths (in angstrom), (b) Wiberg bond indices, (c) Wiberg valencies and (d) atomic charges.



Figure S14: (a) Infrared and (b) Raman spectra of  $HC_4N$  and  $C_4N^-$  bent singlet chains considered in this paper.



Figure S15: (a) Infrared and (b) Raman spectra of  $HC_4N$  and  $C_4N^-$  triplet chains considered in this paper.



Figure S16: Degenerate HOMO and HOMO-1 (upper left and right panel, respectively) and LUMO (lower panel) of the neutral  $C_4 N^0$  quartet  $(\tilde{a}^4 \Sigma^-)$ .



Figure S17: HOMO and LUMO (upper and lower panel, respectively) of the bent  ${\rm C_4N^-}$  singlet (^1A').



Figure S18: HOMO (upper panel) and nearly degenerate LUMO and LUMO+1 (lower left and right panel, respectively) of the linear  $C_4N^-$  singlet  $(^1\Sigma^-)$ .



Figure S19: HOMO and LUMO (left and right panel, respectively) of the  $C_4N^+$  triplet  $(^3\Sigma^+)$ .

Table S14: Values of vertical and adiabatic cation singlet-triplet splitting  $(\Delta_{ST}^+ (\mathbf{R}_{S,T}^+) \equiv \mathcal{E}_T^+ (\mathbf{R}_{S,T}^+) - \mathcal{E}_S^+ (\mathbf{R}_{S,T}^+))$  and  $\Delta_{ST}^{+,ad} \equiv \mathcal{E}_T^+ (\mathbf{R}_T^+) - \mathcal{E}_S^+ (\mathbf{R}_S^+)$ , respectively) computed without and with corrections due to zero point motion with geometries  $\mathbf{R}_{S,T}^+$  optimized using several exchange-correlation functionals and 6-311++G(3df, 3pd) basis sets.

|                                                  |                          | B3LYP            | PBE0             | M06-2X           |
|--------------------------------------------------|--------------------------|------------------|------------------|------------------|
| $\Delta_{ST}^{+}\left(\mathbf{R}_{S}^{+}\right)$ | uncorrected              | 1.517            | 1.250            | 1.451            |
|                                                  | corrected                | 1.489            | 1.251            | 1.441            |
| $\Delta_{ST}^{+}\left(\mathbf{R}_{T}^{+}\right)$ | uncorrected corrected    | $1.046 \\ 1.018$ | $0.796 \\ 0.797$ | $0.965 \\ 0.955$ |
| $\Delta_{ST}^{+,ad}$                             | uncorrected<br>corrected | 1.311<br>1.283   | $1.052 \\ 1.054$ | 1.247<br>1.236   |

| Species            | Method                           | $A(\mathrm{GHz})$ | $B({ m GHz})$ | $C (\mathrm{GHz})$ |
|--------------------|----------------------------------|-------------------|---------------|--------------------|
| neutral doublet    | UB3LYP/6-311++G(3df, 3pd)        |                   | 2.44239       |                    |
|                    | UPBE0/6-311++G(3df, 3pd)         |                   | 2.44128       |                    |
|                    | UM06-2X/6-311++G(3df, 3pd)       |                   | 2.43646       |                    |
|                    | UB2GP-PLYP/6-311++G(3df, 3pd)    |                   | 2.44310       |                    |
|                    | UHF/3-21G <sup>14</sup>          |                   | 2.4075        |                    |
|                    | $UHF/svp^{14}$                   |                   | 2.3963        |                    |
|                    | . –                              |                   |               |                    |
| neutral quartet    | UB3LYP/6-311++G(3df, 3pd)        |                   | 2.46635       |                    |
| -                  | UPBE0/6-311++G(3df, 3pd)         |                   | 2.46586       |                    |
|                    | UM06-2X/6-311++G(3df, 3pd)       |                   | 2.46171       |                    |
|                    |                                  |                   |               |                    |
| anion triplet      | UB3LYP/6-311++G(3df, 3pd)        |                   | 2.42267       |                    |
| 1                  | UPBE0/6-311++G(3df, 3pd)         |                   | 2.42220       |                    |
|                    | UM06-2X/6-311++G(3df, 3pd)       |                   | 2.42084       |                    |
|                    | UB2GP-PLYP/ $6-311++G(3df, 3pd)$ |                   | 2.42361       |                    |
|                    |                                  |                   |               |                    |
| bent anion singlet | RB3LYP/6-311++G(3df, 3pd)        | 56.30860          | 2.82435       | 2.68945            |
| 0                  | RPBE0/6-311++G(3df, 3pd)         | 54.50451          | 2.84356       | 2.70256            |
|                    | RM06-2X/6-311++G(3df, 3pd)       | 46.19743          | 2.92536       | 2.75115            |
|                    |                                  |                   |               |                    |
| cation singlet     | RB3LYP/6-311++G(3df. 3pd)        |                   | 2.44330       |                    |
| 0                  | RPBE0/6-311++G(3df, 3pd)         |                   | 2.44262       |                    |
|                    | RM06-2X/6-311++G(3df, 3pd)       |                   | 2.44031       |                    |
|                    | BB2GP-PLYP/6-311++G(3df, 3pd)    |                   | 2.42933       |                    |
|                    |                                  |                   |               |                    |
| cation triplet     | UB3LYP/6-311++G                  |                   | 2.47931       |                    |
|                    | UPBE0/6-311++G                   |                   | 2.47907       |                    |
|                    | UM06-2X/6-311++G(3df. 3pd)       |                   | 2.47802       |                    |

Table S15: Longitudinal (nonvanishing A only for bent anion singlet) and perpendicular (B = C except for the bent anion singlet) rotational constants of the C<sub>4</sub>N chains investigated in this paper computed by using methods indicated in the second column.

Table S16: Values of the dipole momentum **D** (field independent basis, debye) at various levels of theory indicated in the second column. Notice that the value in italics obtained by Pauzat *et al.*<sup>14</sup> within the UHF/svp approach is somewhat different from that of our calculations at the same level of theory.

| Species         | Method                        | $D_X$  | $D_Y$  | $D_Z$            | $D_{total}$                     |
|-----------------|-------------------------------|--------|--------|------------------|---------------------------------|
| neutral doublet | B3LYP/6-311++G(3df, 3pd)      | 0.0000 | 0.0000 | 0.3347           | 0.3347                          |
|                 | B3LYP/aug-cc-pVTZ             | 0.0000 | 0.0000 | 0.3393           | 0.3393                          |
|                 | UCCSD(T)/6-311++G(3df, 3pd)   | 0.0000 | 0.0000 | 0.0907           | 0.0907                          |
|                 | UCCSD(T)/aug-cc-pvtz          | 0.0000 | 0.0000 | 0.0990           | 0.0990                          |
|                 | ROCCSD(T)/6-311++G(3df, 3pd)  | 0.0000 | 0.0000 | 0.4512           | 0.4512                          |
|                 | ROCCSD(T)/aug-cc-pVTZ         | 0.0000 | 0.0000 | 0.4436           | 0.4436                          |
|                 | $\mathrm{UHF}/\mathrm{3-21g}$ | 0.0000 | 0.0000 | 0.0544           | 0.0544                          |
|                 | UHF/svp                       | 0.0000 | 0.0000 | 0.1119           | 0.1119                          |
|                 | $\rm UHF/svp^{14}$            | 0.0000 | 0.0000 | 0.14             | 0.14                            |
|                 | UHF/6-311++G(3df, 3pd)        | 0.0000 | 0.0000 | 0.0587           | 0.0587                          |
|                 | UHF/aug-cc-pvtz               | 0.0000 | 0.0000 | 0.0654           | 0.0654                          |
|                 | ROHF/3-21g                    | 0.0000 | 0.0000 | 0.5486           | 0.5486                          |
|                 | ROHF/svp                      | 0.0000 | 0.0000 | 0.6216           | 0.6216                          |
|                 | ROHF/6-311++G(3df, 3pd)       | 0.0000 | 0.0000 | 0.7821           | 0.7821                          |
|                 | ROHF/aug-cc-pVTZ              | 0.0000 | 0.0000 | 0.7781           | 0.7781                          |
|                 | , <u> </u>                    |        |        |                  |                                 |
| neutral quartet | B3LYP/6-311++G(3df, 3pd)      | 0.0000 | 0.0000 | 3.4628           | 3.4628                          |
| 1               | B3LYP/aug-cc-pVTZ             | 0.0000 | 0.0000 | 3.4586           | 3.4586                          |
|                 | UCCSD(T)/6-311++G(3df, 3pd)   | 0.0000 | 0.0000 | 3.2558           | 3.2558                          |
|                 | ROCCSD(T)/6-311++G(3df, 3pd)  | 0.0000 | 0.0000 | 4.5003           | 4.5003                          |
|                 | ROCCSD(T)/aug-cc-pVTZ         | 0.0000 | 0.0000 | 4,4940           | 4.4940                          |
|                 | UHF/3-21G                     | 0.0000 | 0.0000 | 2.9749           | 2.9749                          |
|                 | UHF/svp                       | 0.0000 | 0.0000 | 3.1581           | 3.1581                          |
|                 | UHF/6-311++G(3df, 3pd)        | 0.0000 | 0.0000 | 3.2558           | 3.2558                          |
|                 | UHF/aug-ccpVTZ                | 0.0000 | 0.0000 | 3.2479           | 3.2479                          |
|                 | ROHF/3-21G                    | 0.0000 | 0.0000 | 3.8729           | 3.8729                          |
|                 | ROHF/syp                      | 0.0000 | 0.0000 | 4.2865           | 4.2865                          |
|                 | ROHF/6-31++G(3df, 3pd)        | 0.0000 | 0.0000 | 4.5003           | 4.5003                          |
|                 | ROHF/aug-cc-pvtz              | 0.0000 | 0.0000 | 4.4940           | 4.4940                          |
|                 |                               | 0.0000 | 0.0000 | 1, 10 10         | 1.1010                          |
| anion triplet   | B3LYP/6-311++G(3df, 3pd)      | 0.0000 | 0.0000 | 2.9398           | 2.9398                          |
| I I I           | B3LYP/aug-cc-pVTZ             | 0.0000 | 0.0000 | 2.9340           | 2.9400                          |
|                 | UCCSD(T)/6-311++G(3df, 3pd)   | 0.0000 | 0.0000 | 4,4930           | 4.4930                          |
|                 | BOCCSD(T)/6-311++G(3df, 3pd)  | 0.0000 | 0.0000 | 2.2379           | 2.2379                          |
|                 | BOCCSD(T)/aug-cc-pVTZ         | 0.0000 | 0.0000 | 2.2447           | 2.2447                          |
|                 | UHF/3-21G                     | 0.0000 | 0.0000 | 4 5640           | 45640                           |
|                 | UHF/syp                       | 0.0000 | 0.0000 | $4\ 4277$        | $4\ 4277$                       |
|                 | UHF/6-311++G(3df 3pd)         | 0.0000 | 0.0000 | 4,4930           | 4 4930                          |
|                 | UHF/aug-cc-pVTZ               | 0.0000 | 0.0000 | 4 5002           | 45002                           |
|                 | BOHF/3-21G                    | 0.0000 | 0.0000 | 2.4519           | 2.4519                          |
|                 | BOHF/svp                      | 0.0000 | 0.0000 | 2.3422           | $\frac{2}{2},\frac{1010}{3422}$ |
|                 | $BOHE/6-311 \pm C(3df 3nd)$   | 0.0000 | 0.0000 | 2.0422<br>2.2420 | 2.0422<br>2.242                 |
|                 | ROHE/aug-cc-pVTZ              | 0.0000 | 0.0000 | 2.5056           | 2.2015                          |
|                 |                               | 0.0000 | 0.0000 | 2.0000           | 2.0000                          |

Table S17: Values of the quadrupole momentum  $\mathbf{Q}$  (field independent basis, debye-angstrom) of the C<sub>4</sub>N chains investigated in this paper obtained using geometries optimized as indicated in the second column.

| Species              | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Q_{xx}$            | $Q_{yy}$            | $Q_{zz}$          | $Q_{xy}$ | $Q_{xz}$ | $Q_{yz}$ |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------|----------|----------|----------|
| neutral doublet      | B3LYP/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -26.3541            | -27.9983            | -42.2421          | 0.0000   | 0.0000   | 0.0000   |
|                      | B3LYP/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -26.3443            | -27.9421            | -42.2635          | 0.0000   | 0.0000   | 0.0000   |
|                      | UCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -26.4146            | -28.2057            | -42.2981          | 0.0000   | 0.0000   | 0.0000   |
|                      | UCCSD(T)/aug-cc-pvtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -26.3955            | -28.1379            | -42.3180          | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -28.4353            | -26.8169            | -41.6984          | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -26.8005            | -28.3699            | -41.7230          | 0.0000   | 0.0000   | 0.0000   |
|                      | $\mathrm{UHF}/3\text{-}21\mathrm{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.2685            | -26.4478            | -41.7598          | 0.0000   | 0.0000   | 0.0000   |
|                      | $\mathrm{UHF/svp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -26.5232            | -28.3367            | -42.6564          | 0.0000   | 0.0000   | 0.0000   |
|                      | UHF/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -26.4489            | -28.2494            | -42.2687          | 0.0000   | 0.0000   | 0.0000   |
|                      | UHF/aug-cc-pvtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -28.1845            | -26.4327            | -42.2852          | 0.0000   | 0.0000   | 0.0000   |
| neutral quartet      | $B3LVP/6-311++G(3df_3pd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27 5520            | -27 5520            | -30 7287          | 0.0000   | 0.0000   | 0.0000   |
| neutrai quartet      | B3LVP/aug-cc-nVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -27.5250            | -27.5250            | -30 7352          | 0.0000   | 0.0000   | 0.0000   |
|                      | UCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -27.6065            | -27.6065            | -30.5244          | 0.0000   | 0.0000   | 0.0000   |
|                      | BOCCSD(T)/6-311++G(3df 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -28 0387            | -28 0387            | -295375           | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -27.9995            | -27.9995            | -29.5470          | 0.0000   | 0.0000   | 0.0000   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                   |          |          |          |
| anion triplet        | B3LYP/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -31.7023            | -31.7023            | -71.4631          | 0.0000   | 0.0000   | 0.0000   |
|                      | B3LYP/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -31.6879            | -31.6879            | -71.5144          | 0.0000   | 0.0000   | 0.0000   |
|                      | UCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -31.8018            | -31.8018            | -71.7508          | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -32.1142            | -32.1142            | -70.2281          | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -32.0834            | -32.0834            | -70.2791          | 0.0000   | 0.0000   | 0.0000   |
| bent anion singlet   | B3LYP/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -63.8640            | -36.8339            | -30.3058          | 1.4754   | 0.0000   | 0.0000   |
|                      | B3LYP/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -63.8640            | -36.8339            | -30.3058          | 1.4754   | 0.0000   | 0.0000   |
|                      | RCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -62.9911            | -37.1863            | -30.6481          | 1.1594   | 0.0000   | 0.0000   |
|                      | RCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -63.0000            | -37.1600            | -30.6336          | 1.1690   | 0.0000   | 0.0000   |
| linear anion singlet | $B3LYP/6-311++G(3df_3nd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -29 8650            | -33 8601            | -71 3765          | 0.0000   | 0.0000   | 0.0000   |
| inicar amon singlet  | B3LYP/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -29.9174            | -33 8018            | -71 4570          | 0.0000   | 0.0000   | 0.0000   |
|                      | $BCCSD(T)/6-311++G(3df_3pd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -30 2092            | -34 2094            | -70 3492          | 0.0000   | 0.0000   | 0.0000   |
|                      | BCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -34.1124            | -30.2533            | -70.4022          | 0.0000   | 0.0000   | 0.0000   |
|                      | 100 00D (1)/ add 00 p ( 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01111               | 00.2000             |                   | 0.0000   | 0.0000   | 0.0000   |
| cation singlet       | B3LYP/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.7770            | -23.7770            | -15.6956          | 0.0000   | 0.0000   | 0.0000   |
| -                    | B3LYP/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -23.7770            | -23.7770            | -15.6957          | 0.0000   | 0.0000   | 0.0000   |
|                      | RCCSD(T)/6-311++G(3df, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -23.7366            | -23.7366            | -15.7048          | 0.0000   | 0.0000   | 0.0000   |
|                      | RCCSD(T)/aug-cc-pVTZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -24.3542            | -24.3542            | -14.1423          | 0.0000   | 0.0000   | 0.0000   |
| aption triplet       | <b>D9IVD</b> /6 211 + $C(2df - 2\pi d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 4002             | 21 81 86            | 6 0074            | 0.0000   | 0.0000   | 0.0000   |
| cation triplet       | $\frac{\text{B3IVP}}{\text{B3IVP}} = \frac{1}{2} \frac{1}$ | -23.4092<br>24 7575 | -24.0100<br>02 2020 | -0.0974           | 0.0000   | 0.0000   | 0.0000   |
|                      | $\frac{D D \Gamma \Gamma}{dug-cc-p \vee \Gamma \Delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -24.1010            | -20.0900<br>02 7270 | -0.1030<br>7 4105 | 0.0000   | 0.0000   | 0.0000   |
|                      | UUU3D(1)/0-311++G(301, 3pd)<br>DOCCCD(T)/6 211++C(24f 2-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -20.0731            | -20.1019<br>05 2110 | -1.4190<br>5.9170 | 0.0000   | 0.0000   | 0.0000   |
|                      | ROCCSD(1)/6-311++G(3dt, 3pd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -24.0058            | -25.3116            | -5.2179<br>E 9974 | 0.0000   | 0.0000   | 0.0000   |
|                      | ROUGSD(1)/aug-cc-pV1Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -25.2346            | -23.9786            | -5.2274           | 0.0000   | 0.0000   | 0.0000   |

Table S18: Values of the higher vibrational frequencies (in  $\text{cm}^{-1}$ ) of the presently investigated molecular species obtained via B3LYP/6-311++G(3df, 3pd) calculations.

| Description $C_4 N^{\dagger}$                                    | <sup>0</sup> doublet $C_4 N^0$ | quartet bent $C_4N$ | $^{-}$ singlet $C_4^{-}N$ | <sup>-</sup> triplet $C_4 N^+$ | $_{4}^{\rm out}$ singlet $C_{4}^{\rm N}$ N <sup>+</sup> | triplet $HC_4$ | N singlet $HC_4$ | N triplet |
|------------------------------------------------------------------|--------------------------------|---------------------|---------------------------|--------------------------------|---------------------------------------------------------|----------------|------------------|-----------|
| symmetric stretch (breath.)                                      | 752.62                         | 765.66              | 827.08                    | 753.17                         | 756.09                                                  | 775.07         | 847.97           | 754.26    |
| out-of-phase $C_1C_2$ — $C_4N$ stretch                           | 1421.85                        | 1559.49             | 1320.77                   | 1475.77                        | 1418.37                                                 | 1579.14        | 1376.99          | 1577.41   |
| in-phase C <sub>1</sub> C <sub>2</sub> —C <sub>4</sub> N stretch | 1989.43                        | 1753.86             | 1898.25                   | 1835.45                        | 2198.39                                                 | 1956.48        | 1997.43          | 1762.66   |
| ČN stretch                                                       | 2181.87                        | 2071.92             | 2149.62                   | 2013.49                        | 2325.12                                                 | 2138.33        | 2156.55          | 2029.44   |
| CH stretch                                                       | _                              | —                   | _                         |                                | _                                                       |                | 3449.65          | 3446.77   |

Table S19: Values of the vertical and adiabatic doublet-triplet electron attachment energies  $(EA_{TD}^{vert}(\mathbf{R}) \equiv \mathcal{E}_D^0(\mathbf{R}) - \mathcal{E}_T^-(\mathbf{R})$  and  $EA_{TD}^{ad} \equiv \mathcal{E}_D^0(\mathbf{R}_D^0) - \mathcal{E}_T^-(\mathbf{R}_T^-)$ , respectively) computed without and with corrections due to zero point motion using the neutral doublet  $(\mathbf{R} = \mathbf{R}_D^0)$  and anion triplet  $(\mathbf{R} = \mathbf{R}_T^-)$  B3LYP/6-311++G(3df, 3pd) optimum geometries.

|                                                 |             | EOM-ROCCSD | B3LYP | LC-BLYP | $LC-\omega PBE$ |
|-------------------------------------------------|-------------|------------|-------|---------|-----------------|
| $EA_{TD}^{vert}\left(\mathbf{R}_{D}^{0}\right)$ | uncorrected | 3.027      | 3.217 | 3.479   | 3.514           |
|                                                 | corrected   | 3.017      | 3.207 | 3.469   | 3.504           |
| $EA_{TD}^{vert}\left(\mathbf{R}_{T}^{-}\right)$ | uncorrected | 3.199      | 3.360 | 3.670   | 3.690           |
|                                                 | corrected   | 3.189      | 3.350 | 3.659   | 3.679           |
| $EA_{TD}^{ad}$                                  | uncorrected | 3.109      | 3.285 | 3.497   | 3.545           |
|                                                 | corrected   | 3.099      | 3.274 | 3.486   | 3.534           |

Table S20: Values of the vertical and adiabatic doublet-triplet electron attachment energies  $(EA_{TD}^{vert}(\mathbf{R}) \equiv \mathcal{E}_D^0(\mathbf{R}) - \mathcal{E}_T^-(\mathbf{R})$  and  $EA_{TD}^{ad} \equiv \mathcal{E}_D^0(\mathbf{R}_D^0) - \mathcal{E}_T^-(\mathbf{R}_T^-)$ , respectively) computed without and with corrections due to zero point motion using the neutral doublet  $\mathbf{R}_D^0$  and anion triplet  $\mathbf{R}_T^-$  geometries optimized within B3LYP/6-311++G(3df, 3pd) and PBE0/6-311++G(3df, 3pd).

|                                                 |             | B3LYP | PBE0  | EOM-ROCCSD@B3LYP | EOM-ROCCSD@PBE0 |
|-------------------------------------------------|-------------|-------|-------|------------------|-----------------|
| $EA_{TD}^{vert}\left(\mathbf{R}_{D}^{0}\right)$ | uncorrected | 3.217 | 3.288 | 3.027            | 3.006           |
|                                                 | corrected   | 3.207 | 3.275 | 3.017            | 2.993           |
| $EA_{TD}^{vert}\left(\mathbf{R}_{T}^{-}\right)$ | uncorrected | 3.360 | 3.431 | 3.199            | 3.175           |
|                                                 | corrected   | 3.350 | 3.418 | 3.189            | 3.162           |
| $EA_{TD}^{ad}$                                  | uncorrected | 3.285 | 3.355 | 3.109            | 3.086           |
| 1D                                              | corrected   | 3.274 | 3.342 | 3.099            | 3.073           |

Table S21: Values of the vertical and adiabatic doublet-triplet electron attachment EA computed without and with corrections due to zero point motion using the neutral doublet  $\mathbf{R}_D^0$  and anion triplet  $\mathbf{R}_T^-$  geometries optimized by means of several functionals and 6-311++G(3df, 3pd) basis sets.

|                                                 |             | B3LYP | PBE0  | M06-2X |
|-------------------------------------------------|-------------|-------|-------|--------|
| $EA_{TD}^{vert}\left(\mathbf{R}_{D}^{0}\right)$ | uncorrected | 3.217 | 3.288 | 3.304  |
|                                                 | corrected   | 3.207 | 3.275 | 3.317  |
| $EA_{TD}^{vert}\left(\mathbf{R}_{T}^{-}\right)$ | uncorrected | 3.360 | 3.431 | 3.273  |
|                                                 | corrected   | 3.350 | 3.418 | 3.285  |
| $EA_{TD}^{ad}$                                  | uncorrected | 3.285 | 3.355 | 3.386  |
|                                                 | corrected   | 3.274 | 3.342 | 3.398  |

Table S22: Values of the vertical and adiabatic doublet-singlet ionization energy  $(IP_{SD}^{vert}(\mathbf{R}) \equiv \mathcal{E}_{S}^{+}(\mathbf{R}) - \mathcal{E}_{D}^{0}(\mathbf{R})$  and  $IP_{SD}^{ad} \equiv \mathcal{E}_{S}^{+}(\mathbf{R}_{S}^{+}) - \mathcal{E}_{D}^{0}(\mathbf{R}_{D}^{0})$ , respectively) computed without and with with corrections due to zero point motion using the neutral doublet  $(\mathbf{R} = \mathbf{R}_{D}^{0})$  and cation singlet  $(\mathbf{R} = \mathbf{R}_{S}^{+})$  B3LYP/6-311++G(3df, 3pd) optimum geometries.

|                                                 |             | EOM-ROCCSD | B3LYP | LC-BLYP | $LC-\omega PBE$ |
|-------------------------------------------------|-------------|------------|-------|---------|-----------------|
| $IP_{SD}^{vert}\left(\mathbf{R}_{D}^{0} ight)$  | uncorrected | 9.802      | 9.812 | 10.258  | 10.226          |
|                                                 | corrected   | 9.842      | 9.852 | 10.297  | 10.265          |
| $IP_{SD}^{vert}\left(\mathbf{R}_{S}^{+}\right)$ | uncorrected | 9.797      | 9.780 | 10.225  | 10.194          |
|                                                 | corrected   | 9.836      | 9.819 | 10.265  | 10.233          |
| $IP_{SD}^{ad}$                                  | uncorrected | 9.783      | 9.794 | 10.215  | 10.187          |
|                                                 | corrected   | 9.823      | 9.833 | 10.254  | 10.227          |

Table S23: Values of the vertical and adiabatic doublet-singlet ionization energy  $(IP_{SD}^{vert}(\mathbf{R}) \equiv \mathcal{E}_{S}^{+}(\mathbf{R}) - \mathcal{E}_{D}^{0}(\mathbf{R})$  and  $IP_{SD}^{ad} \equiv \mathcal{E}_{S}^{+}(\mathbf{R}_{S}^{+}) - \mathcal{E}_{D}^{0}(\mathbf{R}_{D}^{0})$ , respectively) computed without and with corrections due to zero point motion using 6-311++G(3df, 3pd) basis sets and the neutral doublet ( $\mathbf{R} = \mathbf{R}_{D}^{0}$ ) and cation singlet ( $\mathbf{R} = \mathbf{R}_{S}^{+}$ ) geometries optimized within B3LYP/6-311++G(3df, 3pd) and PBE0/6-311++G(3df, 3pd).

|                                                 |             | B3LYP | PBE0  | EOM-ROCCSD@B3LYP | EOM-ROCCSD@PBE0 |
|-------------------------------------------------|-------------|-------|-------|------------------|-----------------|
| $IP_{SD}^{vert}\left(\mathbf{R}_{D}^{0} ight)$  | uncorrected | 9.812 | 9.874 | 9.802            | 9.805           |
|                                                 | corrected   | 9.852 | 9.915 | 9.842            | 9.845           |
| $IP_{SD}^{vert}\left(\mathbf{R}_{S}^{+}\right)$ | uncorrected | 9.780 | 9.844 | 9.797            | 9.801           |
|                                                 | corrected   | 9.819 | 9.884 | 9.836            | 9.841           |
| $IP_{SD}^{ad}$                                  | uncorrected | 9.794 | 9.857 | 9.783            | 9.800           |
|                                                 | corrected   | 9.833 | 9.897 | 9.823            | 9.840           |

Table S24: Values of the vertical and adiabatic doublet-singlet ionization energy IP computed without and with corrections due to zero point motion using the neutral doublet  $\mathbf{R}_D^0$  and cation singlet  $\mathbf{R}_S^+$  geometries optimized by means of several functionals and 6-311++G(3df, 3pd) basis sets.

|                                                |             | B3LYP | PBE0  | M06-2X |
|------------------------------------------------|-------------|-------|-------|--------|
| $IP_{SD}^{vert}\left(\mathbf{R}_{D}^{0} ight)$ | uncorrected | 9.812 | 9.874 | 9.835  |
|                                                | corrected   | 9.852 | 9.915 | 9.946  |
| $IP_{SD}^{vert}\left(\mathbf{R}_{S}^{+} ight)$ | uncorrected | 9.780 | 9.844 | 9.812  |
| ~_ ( ~,                                        | corrected   | 9.819 | 9.884 | 9.822  |
| $IP_{SD}^{ad}$                                 | uncorrected | 9.794 | 9.857 | 9.822  |
|                                                | corrected   | 9.833 | 9.897 | 9.832  |

Table S25: Quadrupole moment  $\mathbf{Q}$  (field independent basis, debye-angstrom) of the isoelectronic  $C_4 N^-$  and  $HC_4 N$  chains computed as indicated in the second column.

| Species                | Method                                             | $Q_{xx}$ | $Q_{yy}$ | $Q_{zz}$ | $Q_{xy}$ | $Q_{xz}$ | $Q_{yz}$ |
|------------------------|----------------------------------------------------|----------|----------|----------|----------|----------|----------|
| $C_4 N^-$ triplet      | B3LYP/6-311++G(3df, 3pd)                           | -34.2070 | -68.9571 | -31.7034 | -9.6536  | 0.0000   | 0.0000   |
|                        | B3LYP/aug-cc- $pVTZ$                               | -34.1971 | -69.0040 | -31.6890 | -9.6702  | 0.0000   | 0.0000   |
|                        | UCCSD(T)/6-311++G(3df, 3pd)                        | -34.3255 | -69.2273 | -31.8029 | -9.7128  | 0.0000   | 0.0000   |
|                        | ROCCSD(T)/6-311++G(3df, 3pd)                       | -34.5067 | -67.8347 | -32.1155 | -9.2375  | 0.0000   | 0.0000   |
|                        | ROCCSD(T)/aug-cc-pVTZ                              | -34.4814 | -67.8801 | -32.0848 | -9.2581  | 0.0000   | 0.0000   |
| $HC_4N$ triplet        | B3LYP/6-311++G(3df, 3pd)                           | -28.4399 | -27.7588 | -28.4371 | -0.1693  | 0.0000   | 0.0000   |
|                        | B3LYP/aug-cc-pVTZ                                  | -28.4196 | -27.7593 | -28.4116 | -0.1574  | 0.0000   | 0.0000   |
|                        | UCCSD(T)/6-311++G(3df, 3pd)                        | -28.4547 | -27.4563 | -28.5638 | -0.3883  | 0.0000   | 0.0000   |
|                        | ROCCSD(T)/6-311++G(3df, 3pd)                       | -29.0226 | -28.2790 | -29.0194 | -0.1844  | 0.0000   | 0.0000   |
|                        | ROCCSD(T)/aug-cc-pVTZ                              | -28.9932 | -28.2743 | -28.9830 | -0.1694  | 0.0000   | 0.0000   |
| bent $C_4 N^-$ singlet | B3LYP/6-311++G(3df, 3pd)                           | -63.8640 | -36.8339 | -30.3058 | 1.4754   | 0.0001   | 0.0001   |
|                        | B3LYP/aug-cc- $pVTZ$                               | -63.8640 | -36.8339 | -30.3058 | 1.4754   | 0.0001   | 0.0001   |
|                        | RCCSD(T)/6-311++G(3df, 3pd)                        | -62.9911 | -37.1863 | -30.6481 | 1.1594   | 0.0000   | 0.0001   |
|                        | $\mathrm{RCCSD}(\mathrm{T})/\mathrm{aug}$ -cc-pVTZ | -63.0000 | -37.1600 | -30.6336 | 1.1690   | 0.0001   | 0.0001   |
| $HC_4N$ singlet        | B3LYP/6-311++G(3df, 3pd)                           | -27.3591 | -30.3776 | -27.1872 | -4.3257  | 0.0000   | 0.0000   |
|                        | B3LYP/aug-cc- $pVTZ$                               | -27.3407 | -30.3437 | -27.1738 | -4.3184  | 0.0000   | 0.0000   |
|                        | RCCSD(T)/6-311++G(3df, 3pd)                        | -27.1081 | -30.8650 | -27.7089 | -4.6705  | 0.0000   | 0.0000   |
|                        | RCCSD(T)/aug-cc-pVTZ                               | -27.0845 | -30.8217 | -27.6860 | -4.6599  | 0.0000   | 0.0000   |



Figure S20: Bond order indices versus bond lengths of the  $C_4N$  chains investigated in the present paper. The linear fitting line suggests possible correlations.

Table S26: Reorganization energies  $\lambda_a^b \equiv \mathcal{E}_a(\mathbf{R}_b) - \mathcal{E}_a(\mathbf{R}_a)$  of the C<sub>4</sub>N anions — triplet  $(T^-)$ , bent singlet  $(bS^-)$  and (metastable) linear singlet  $(lS^-)$  — with respect to the neutral doublet (D).

| Functional | $\lambda_{T^{-}}^{D}$ | $\lambda_D^{T^-}$ | $\lambda^D_{bS^-}$ | $\lambda_D^{bS^-}$ | $\lambda_{lS^{-}}^{D}$ | $\lambda_D^{lS^-}$ |
|------------|-----------------------|-------------------|--------------------|--------------------|------------------------|--------------------|
| B3LYP      | 0.067                 | 0.076             | 0.338              | 0.488              | 0.082                  | 0.081              |
| PBE0       | 0.067                 | 0.076             | 0.342              | 0.509              | 0.087                  | 0.087              |
| M06-2X     | 0.081                 | -0.113            | 0.446              | 0.600              | 0.111                  | 0.110              |

Table S27: Reorganization energies  $\lambda_a^b \equiv \mathcal{E}_a(\mathbf{R}_b) - \mathcal{E}_a(\mathbf{R}_a)$  of the C<sub>4</sub>N singlet  $(S^+)$  and triplet  $(T^+)$  cations with respect to the neutral doublet (D).

| Functional | $\lambda^D_{S^+}$ | $\lambda_D^{S^+}$ | $\lambda_{T^+}^D$ | $\lambda_D^{T^+}$ |
|------------|-------------------|-------------------|-------------------|-------------------|
| B3LYP      | 0.019             | 0.014             | 0.124             | 0.124             |
| PBE0       | 0.018             | 0.013             | 0.121             | 0.121             |
| M06-2X     | 0.014             | 0.010             | 0.138             | 0.138             |

| No. | Species   | Method           |               | Reaction                   |          |                   |          | $\Delta_r H_0^0$ | $\Delta_r H_{RT}^0$ |
|-----|-----------|------------------|---------------|----------------------------|----------|-------------------|----------|------------------|---------------------|
| 1   | $C_4N$    | $C_4N$           | $\rightarrow$ | С                          | +        | $C_3N$            | CBS-QB3  | 139.4            | 140.1               |
|     |           | $C_4N$           | $\rightarrow$ | $\mathbf{C}$               | +        | $C_3N$            | CBS-APNO | 137.3            | 138.0               |
|     |           | $\rm C_4N$       | $\rightarrow$ | $\mathbf{C}$               | +        | $C_3N$            | CBS-4M   | 138.6            | 139.6               |
| 2   |           | $C_4N$           | $\rightarrow$ | $\mathbf{C}_2$             | +        | $\rm C_2N$        | CBS-QB3  | 152.0            | 152.8               |
|     |           | $C_4N$           | $\rightarrow$ | $C_2$                      | +        | $C_2N$            | CBS-APNO | 152.0            | 155.9               |
|     |           | $\rm C_4N$       | $\rightarrow$ | $\mathbf{C}_2$             | +        | $\rm C_2N$        | CBS-4M   | 155.2            | 156.3               |
| 3   |           | $\rm C_4N$       | $\rightarrow$ | $C_3$                      | +        | CN                | CBS-QB3  | 95.3             | 96.4                |
|     |           | $C_4N$           | $\rightarrow$ | $C_3$                      | +        | CN                | CBS-APNO | 94.2             | 95.3                |
|     |           | $\rm C_4N$       | $\rightarrow$ | $C_3$                      | +        | CN                | CBS-4M   | 103.0            | 104.3               |
| 4   |           | $C_4N$           | $\rightarrow$ | $C_4$                      | +        | Ν                 | CBS-QB3  | 159.6            | 160.5               |
|     |           | $C_4N$           | $\rightarrow$ | $\mathrm{C}_4$             | +        | Ν                 | CBS-APNO | 157.8            | 158.5               |
|     |           | $C_4N$           | $\rightarrow$ | $C_4$                      | +        | Ν                 | CBS-4M   | 156.6            | 157.7               |
| 5a  | $C_4 N^-$ | $C_4 N^-$        | $\rightarrow$ | С                          | +        | $C_3 N^-$         | CBS-QB3  | 109.1            | 109.4               |
|     |           | $C_4 N^-$        | $\rightarrow$ | $\mathbf{C}$               | +        | $C_3 N^-$         | CBS-APNO | 110.8            | 111.6               |
|     |           | $\rm C_4 N^-$    | $\rightarrow$ | $\mathbf{C}$               | +        | $\mathrm{C_3N^-}$ | CBS-4M   | 116.6            | 117.5               |
| 5b  |           | $C_4 N^-$        | $\rightarrow$ | $\mathrm{C}^{-}$           | +        | $C_3N$            | CBS-QB3  | 184.4            | 185.4               |
|     |           | $C_{4}N^{-}$     | $\rightarrow$ | $C^{-}$                    | +        | $\tilde{C_3N}$    | CBS-APNO | 183.9            | 184.8               |
|     |           | $C_4^{-}N^{-}$   | $\rightarrow$ | $\mathrm{C}^{-}$           | +        | $ {C_3N}$         | CBS-4M   | 190.9            | 191.8               |
| 69  |           | $C N^{-}$        | $\rightarrow$ | C                          | <b>_</b> | $C N^{-}$         | CBS-OB3  | 160.6            | 161.6               |
| 0a  |           | $C N^{-}$        | $\rightarrow$ | $C_2$                      | ,<br>,   | $C N^{-}$         | CBS_APNO | 166.2            | 101.0<br>170.0      |
|     |           | $C N^{-}$        |               | $C_2$                      | 1        | $C N^{-}$         | CBS 4M   | 165.5            | 166.6               |
| C1  |           | $O_4 N$          |               | $O_2$                      | т<br>,   | $O_2 N$           | CDC OD2  | 151.0            | 150.1               |
| 00  |           | $C_4N$           | $\rightarrow$ | $C_2$                      | +        | $C_2N$            | CBS-QB3  | 151.0            | 152.1               |
|     |           | $C_4 N^-$        | $\rightarrow$ | $C_2$                      | +        | $C_2N$            | CBS-APNO | 152.6            | 153.5               |
|     |           | $C_4 N^-$        | $\rightarrow$ | $C_2^-$                    | +        | $C_2N$            | CBS-4M   | 156.9            | 158.0               |
| 7a  |           | $C_4 N^-$        | $\rightarrow$ | $C_3$                      | +        | $\rm CN^-$        | CBS-QB3  | 77.6             | 79.0                |
|     |           | $C_4 N^-$        | $\rightarrow$ | $C_3$                      | +        | $\rm CN^-$        | CBS-APNO | 79.7             | 81.0                |
|     |           | $\rm C_4 N^-$    | $\rightarrow$ | $C_3$                      | +        | $\rm CN^-$        | CBS-4M   | 88.4             | 89.7                |
| 7b  |           | $\rm C_4 N^-$    | $\rightarrow$ | $C_3^{-}$                  | +        | CN                | CBS-QB3  | 122.0            | 123.3               |
|     |           | $C_4 N^-$        | $\rightarrow$ | $C_3^{-}$                  | +        | CN                | CBS-APNO | 122.4            | 123.4               |
|     |           | $\rm C_4 N^-$    | $\rightarrow$ | $C_3^{-}$                  | +        | CN                | CBS-4M   | 130.2            | 131.5               |
| 8a  |           | $C_{4}N^{-}$     | $\rightarrow$ | $C_{4}$                    | +        | $N^{-}$           | CBS-QB3  | 238.1            | 239.4               |
|     |           | $C_{4}^{4}N^{-}$ | $\rightarrow$ | $C_{4}^{4}$                | +        | $N^{-}$           | CBS-APNO | 241.8            | 243.0               |
|     |           | $C_4^4 N^-$      | $\rightarrow$ | $\operatorname{C}_{4}^{4}$ | +        | $N^{-}$           | CBS-4M   | 241.8            | 243.0               |
| 8b  |           | $C_{4}N^{-}$     | $\rightarrow$ | $C_{A}^{-}$                | +        | Ν                 | CBS-QB3  | 141.8            | 142.8               |
|     |           | $\tilde{C_A}N^-$ | $\rightarrow$ | $C_{A}^{-}$                | +        | Ν                 | CBS-APNO | 142.5            | 143.3               |
|     |           | $\tilde{C_4}N^-$ | $\rightarrow$ | $C_4^{-}$                  | +        | Ν                 | CBS-4M   | 144.6            | 145.8               |

Table S28: Dissociation of neutral and anion  $C_4N$  chains. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols.<sup>24</sup> All values (in kcal/mol) refer to the electronic ground states.

Table S29: Dissociation of neutral C<sub>2</sub>N, C<sub>3</sub>N, and C<sub>5</sub>N chains already detected in space. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols.<sup>24</sup> All values (in kcal/mol) refer to the electronic ground states.

| No. | Species          |                          | Reaction      |                               |   |                  | Method   | $\Delta_r H_0^0$ | $\Delta_r H_{RT}^0$ |
|-----|------------------|--------------------------|---------------|-------------------------------|---|------------------|----------|------------------|---------------------|
| 9a  | $C_2N$           | $C_2N$                   | $\rightarrow$ | С                             | + | CN               | CBS-QB3  | 113.4            | 114.4               |
|     |                  | $C_2N$                   | $\rightarrow$ | С                             | + | CN               | CBS-APNO | 113.1            | 114.1               |
|     |                  | $\mathrm{C}_2\mathrm{N}$ | $\rightarrow$ | С                             | + | CN               | CBS-4M   | 116.6            | 117.7               |
| 9b  |                  | $C_2N$                   | $\rightarrow$ | $C_2$                         | + | Ν                | CBS-QB3  | 145.8            | 146.8               |
|     |                  | $C_2N$                   | $\rightarrow$ | $C_2$                         | + | Ν                | CBS-APNO | 149.3            | 148.7               |
|     |                  | $C_2N$                   | $\rightarrow$ | $C_2$                         | + | Ν                | CBS-4M   | 147.5            | 148.7               |
| 10a | $C_3N$           | $C_3N$                   | $\rightarrow$ | С                             | + | $C_2N$           | CBS-QB3  | 156.8            | 157.9               |
|     |                  | $\tilde{C_3N}$           | $\rightarrow$ | С                             | + | $\bar{C_2N}$     | CBS-APNO | 158.8            | 159.7               |
|     |                  | $C_3N$                   | $\rightarrow$ | $\mathbf{C}$                  | + | $\tilde{C_2N}$   | CBS-4M   | 158.0            | 159.0               |
| 10b |                  | $C_{2}N$                 | $\rightarrow$ | $C_2$                         | + | CN               | CBS-QB3  | 126.0            | 127.1               |
|     |                  | C <sub>3</sub> N         | $\rightarrow$ | $\tilde{C_2}$                 | + | CN               | CBS-APNO | 131.0            | 132.0               |
|     |                  | $\tilde{C_3N}$           | $\rightarrow$ | $\tilde{C_2}$                 | + | CN               | CBS-4M   | 133.2            | 134.4               |
| 10c |                  | C <sub>2</sub> N         | $\rightarrow$ | $C_{2}$                       | + | Ν                | CBS-QB3  | 132.6            | 134.0               |
|     |                  | C <sub>2</sub> N         | $\rightarrow$ | $C_2$                         | + | Ν                | CBS-APNO | 133.9            | 135.2               |
|     |                  | $C_3N$                   | $\rightarrow$ | $C_3$                         | + | Ν                | CBS-4M   | 136.7            | 138.0               |
| 12a | C <sub>E</sub> N | C₌N                      | $\rightarrow$ | C                             | + | C₄N              | CBS-OB3  | 144.1            | 145.7               |
|     | 5                | C <sub>€</sub> N         | $\rightarrow$ | С                             | + | C₄N              | CBS-APNO | 147.2            | 148.1               |
|     |                  | $\tilde{C_5N}$           | $\rightarrow$ | $\mathbf{C}$                  | + | $\tilde{C_4}N$   | CBS-4M   | 147.3            | 148.2               |
| 12b |                  | C <sub>5</sub> N         | $\rightarrow$ | $C_2$                         | + | C <sub>2</sub> N | CBS-QB3  | 139.2            | 140.6               |
|     |                  | C <sub>5</sub> N         | $\rightarrow$ | $\tilde{C_2}$                 | + | C <sub>2</sub> N | CBS-APNO | 143.7            | 144.3               |
|     |                  | $C_5 N$                  | $\rightarrow$ | $C_2^2$                       | + | $C_3N$           | CBS-4M   | 144.6            | 145.5               |
| 12c |                  | C <sub>5</sub> N         | $\rightarrow$ | $C_2$                         | + | C <sub>2</sub> N | CBS-QB3  | 126.0            | 127.8               |
|     |                  | C-N                      | $\rightarrow$ | $C_{2}$                       | + | $\tilde{C_{2}N}$ | CBS-APNO | 128.3            | 129.3               |
|     |                  | $C_5^{3}N$               | $\rightarrow$ | $C_3$                         | + | $C_2^2 N$        | CBS-4M   | 133.7            | 134.8               |
| 12d |                  | C <sub>5</sub> N         | $\rightarrow$ | $C_4$                         | + | CN               | CBS-OB3  | 126.9            | 128.6               |
|     |                  | C <sub>r</sub> N         | $\rightarrow$ | $C_4$                         | + | CN               | CBS-APNO | 128.0            | 128.7               |
|     |                  | $\tilde{C_5N}$           | $\rightarrow$ | $\mathbf{C}_{4}^{4}$          | + | CN               | CBS-4M   | 131.6            | 132.7               |
| 12e |                  | C <sub>r</sub> N         | $\rightarrow$ | C,                            | + | Ν                | CBS-OB3  | 135.8            | 137.3               |
|     |                  | C <sub>F</sub> N         | $\rightarrow$ | $C_{r}^{o}$                   | + | Ν                | CBS-APNO | 136.0            | 136.8               |
|     |                  | $\tilde{C_5N}$           | $\rightarrow$ | $\mathbf{C}_{5}^{\mathbf{J}}$ | + | Ν                | CBS-4M   | 142.9            | 143.8               |

Table S30: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols.<sup>24</sup> All values (in kcal/mol) refer to the electronic ground states.

| No. |                                  |             |                                                                                                                             | Reaction                                        |                                                                                                              |             |                                                                                                              | Method                        | $\Delta_r H_0^0$           | $\Delta_r H_{RT}^0$        |
|-----|----------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------|
| 13  | $C_5$                            | +           | N<br>N                                                                                                                      | $\rightarrow$                                   | C<br>C                                                                                                       | +           | $C_4N$                                                                                                       | CBS-QB3                       | 8.3                        | 8.4                        |
|     | $C_5 C_5$                        | +           | N                                                                                                                           | $\rightarrow$                                   | C<br>C                                                                                                       | +           | $C_4 N$<br>$C_4 N$                                                                                           | CBS-4M<br>CBS-4M              | 4.5                        | 4.3                        |
| 14a | N<br>N<br>N                      | +<br>+<br>+ | $\begin{array}{c} \mathrm{C_4H^-}\\ \mathrm{C_4H^-}\\ \mathrm{C_4H^-} \end{array}$                                          | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | $\begin{array}{c} C_4N\\ C_4N\\ C_4N\end{array}$                                                             | +<br>+<br>+ | H <sup>-</sup><br>H <sup>-</sup><br>H <sup>-</sup>                                                           | CBS-QB3<br>CBS-APNO<br>CBS-4M | $23.9 \\ 32.2 \\ 24.3$     | $24.3 \\ 32.9 \\ 24.6$     |
| 14b | N<br>N<br>N                      | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_{4}\mathrm{H}^{-} \\ \mathrm{C}_{4}\mathrm{H}^{-} \\ \mathrm{C}_{4}\mathrm{H}^{-} \end{array}$ | $\rightarrow$ $\rightarrow$ $\rightarrow$       | $\begin{array}{c} \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\end{array}$ | +<br>+<br>+ | H<br>H<br>H                                                                                                  | CBS-QB3<br>CBS-APNO<br>CBS-4M | -36.0<br>-36.6<br>-41.6    | -35.9<br>-36.1<br>-41.3    |
| 14c | N-<br>N-<br>N-                   | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_{4}\mathrm{H} \\ \mathrm{C}_{4}\mathrm{H} \\ \mathrm{C}_{4}\mathrm{H} \end{array}$             | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | $\begin{array}{c} \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\end{array}$ | +<br>+<br>+ | H<br>H<br>H                                                                                                  | CBS-QB3<br>CBS-APNO<br>CBS-4M | -125.0<br>-137.1<br>-129.2 | -124.8<br>-136.9<br>-129.2 |
| 14d | N-<br>N-<br>N-                   | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_{4}\mathrm{H} \\ \mathrm{C}_{4}\mathrm{H} \\ \mathrm{C}_{4}\mathrm{H} \end{array}$             | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | $\begin{array}{c} \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \end{array}$    | +<br>+<br>+ | H-<br>H-<br>H-                                                                                               | CBS-QB3<br>CBS-APNO<br>CBS-4M | -65.1<br>-68.3<br>-63.3    | -64.6<br>-67.9<br>-63.3    |
| 15a | CN<br>CN<br>CN                   | +<br>+<br>+ | $egin{array}{c} {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \end{array}$                                   | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | H<br>H<br>H                                                                                                  | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \end{array}$    | CBS-QB3<br>CBS-APNO<br>CBS-4M | -20.5<br>-18.9<br>-24.8    | -20.4<br>-18.9<br>-24.8    |
| 15b | $CN^{-}$<br>$CN^{-}$<br>$CN^{-}$ | +<br>+<br>+ | $egin{array}{c} {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \end{array}$                                   | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | H<br>H<br>H                                                                                                  | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\end{array}$ | CBS-QB3<br>CBS-APNO<br>CBS-4M | -2.8<br>-4.5<br>-10.2      | -3.0<br>-4.6<br>-10.2      |
| 15c | $CN^{-}$<br>$CN^{-}$<br>$CN^{-}$ | +<br>+<br>+ | $egin{array}{c} {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \ {\rm C}_{3}{\rm H} \end{array}$                                   | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | H-<br>H-<br>H-                                                                                               | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \\ \mathrm{C}_4\mathrm{N} \end{array}$    | CBS-QB3<br>CBS-APNO<br>CBS-4M | $57.1 \\ 64.4 \\ 55.7$     | $57.2 \\ 64.4 \\ 55.8$     |
| 15d | CN<br>CN<br>CN                   | +<br>+<br>+ | $C_{3}H^{-}$<br>$C_{3}H^{-}$<br>$C_{3}H^{-}$                                                                                | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | H<br>H<br>H                                                                                                  | +<br>+<br>+ | $\begin{array}{c} \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\\ \mathrm{C}_4\mathrm{N}^-\end{array}$ | CBS-QB3<br>CBS-APNO<br>CBS-4M | -50.9<br>-51.9<br>-56.7    | -50.8<br>-51.6<br>-56.8    |
| 15e | CN<br>CN<br>CN                   | ++++++      | $C_{3}H^{-}$<br>$C_{3}H^{-}$<br>$C_{3}H^{-}$                                                                                | $\rightarrow$<br>$\rightarrow$<br>$\rightarrow$ | H <sup>-</sup><br>H <sup>-</sup><br>H <sup>-</sup>                                                           | +<br>+<br>+ | $\begin{array}{c} C_4N\\ C_4N\\ C_4N\\ C_4N\end{array}$                                                      | CBS-QB3<br>CBS-APNO<br>CBS-4M | 9.0<br>16.9<br>9.2         | 9.4<br>17.4<br>9.2         |

Table S31: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols.<sup>24</sup> All values (in kcal/mol) refer to the electronic ground states.

| No. |                       |   |                            | Reaction      |                  |   |                            | Method   | $\Delta_r H_0^0$ | $\Delta_r H_{RT}^0$ |
|-----|-----------------------|---|----------------------------|---------------|------------------|---|----------------------------|----------|------------------|---------------------|
| 16a | CH                    | + | $C_3N$                     | $\rightarrow$ | Н                | + | $C_4N$                     | CBS-QB3  | -59.4            | -59.2               |
|     | CH                    | + | $C_3N$                     | $\rightarrow$ | Η                | + | $C_4N$                     | CBS-APNO | -57.4            | -57.2               |
|     | CH                    | + | $C_3N$                     | $\rightarrow$ | Η                | + | $\mathrm{C}_4\mathrm{N}$   | CBS-4M   | -58.9            | -58.9               |
| 16b | $\mathrm{CH}^-$       | + | $C_3N$                     | $\rightarrow$ | Н                | + | $C_4 N^-$                  | CBS-QB3  | -105.6           | -105.8              |
|     | $\mathrm{CH}^-$       | + | $C_3N$                     | $\rightarrow$ | Η                | + | $C_4 N^-$                  | CBS-APNO | -105.0           | -105.0              |
|     | $\mathrm{CH}^-$       | + | $C_3N$                     | $\rightarrow$ | Η                | + | $\mathrm{C}_4\mathrm{N}^-$ | CBS-4M   | -111.0           | -111.1              |
| 16c | $\mathrm{CH}^-$       | + | $C_3N$                     | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $C_4N$                     | CBS-QB3  | -45.8            | -45.5               |
|     | $\rm CH^-$            | + | $C_3N$                     | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-APNO | -36.2            | -36.0               |
|     | $\rm CH^-$            | + | $C_3N$                     | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $\mathrm{C}_4\mathrm{N}$   | CBS-4M   | -45.1            | -45.2               |
| 16d | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | Н                | + | $C_4 N^-$                  | CBS-QB3  | -29.1            | -29.1               |
|     | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | Η                | + | $C_4 N^-$                  | CBS-APNO | -31.0            | -30.8               |
|     | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | Η                | + | $C_4 N^-$                  | CBS-4M   | -36.8            | -36.9               |
| 17a | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $C_4N$                     | CBS-QB3  | 30.8             | 31.1                |
|     | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-APNO | 37.9             | 38.2                |
|     | CH                    | + | $C_3 N^-$                  | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-4M   | 29.1             | 29.1                |
| 17b | $C_2H$                | + | $C_2N$                     | $\rightarrow$ | Η                | + | $C_4N$                     | CBS-QB3  | -40.4            | -40.3               |
|     | $C_2H$                | + | $C_2N$                     | $\rightarrow$ | Η                | + | $C_4N$                     | CBS-APNO | -41.0            | -40.5               |
|     | $\mathrm{C_{2}H}$     | + | $\mathrm{C}_2\mathrm{N}$   | $\rightarrow$ | Η                | + | $\mathrm{C}_4\mathrm{N}$   | CBS-4M   | -40.4            | -40.3               |
| 17c | $C_2H^-$              | + | $C_2N$                     | $\rightarrow$ | Н                | + | $C_4 N^-$                  | CBS-QB3  | -44.6            | -44.5               |
|     | $C_2H^-$              | + | $C_2N$                     | $\rightarrow$ | Η                | + | $C_4 N^-$                  | CBS-APNO | -46.6            | -46.2               |
|     | $\mathrm{C_{2}H^{-}}$ | + | $\mathrm{C}_2\mathrm{N}$   | $\rightarrow$ | Η                | + | $\mathrm{C}_4\mathrm{N}^-$ | CBS-4M   | -51.7            | -51.5               |
| 17d | $C_2H^-$              | + | $C_2N$                     | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-QB3  | 15.3             | 15.7                |
|     | $C_2H^-$              | + | $C_2N$                     | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-APNO | 22.2             | 22.8                |
|     | $\mathrm{C_{2}H^{-}}$ | + | $\mathrm{C}_2\mathrm{N}$   | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $\mathrm{C}_4\mathrm{N}$   | CBS-4M   | 14.2             | 14.5                |
| 17e | $C_2H$                | + | $\rm C_2 N^-$              | $\rightarrow$ | $\mathrm{H}^-$   | + | $C_4N$                     | CBS-QB3  | 10.8             | 11.2                |
|     | $C_2H$                | + | $C_2 N^-$                  | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $C_4N$                     | CBS-APNO | 16.8             | 17.5                |
|     | $\mathrm{C_{2}H}$     | + | $\rm C_2N^-$               | $\rightarrow$ | $\mathrm{H}^{-}$ | + | $\rm C_4N$                 | CBS-4M   | 15.1             | 15.3                |
| 17f | $\mathrm{C_2H}$       | + | $\mathrm{C}_2\mathrm{N}^-$ | $\rightarrow$ | Η                | + | $\rm C_4 N^-$              | CBS-QB3  | -49.1            | -49.0               |
|     | $C_2H$                | + | $\mathrm{C_2N^-}$          | $\rightarrow$ | Η                | + | $\rm C_4 N^-$              | CBS-APNO | -52.0            | -51.5               |
|     | $C_2H$                | + | $\rm C_2N^-$               | $\rightarrow$ | Η                | + | $\rm C_4 N^-$              | CBS-4M   | -50.8            | -50.6               |

Table S32: Relevant exchange reactions. Enthalpies of reaction at zero (subscript 0) and room temperature (subscript RT) computed by several CBS protocols.<sup>24</sup> All values (in kcal/mol) refer to the electronic ground states.

| No. |             |   |                 | Reaction      |                |   |                          | Method   | $\Delta_r H_0^0$ | $\Delta_r H_{RT}^0$ |
|-----|-------------|---|-----------------|---------------|----------------|---|--------------------------|----------|------------------|---------------------|
| 18  | $NC_2N$     | + | $C_2$           | $\rightarrow$ | Ν              | + | $C_4N$                   | CBS-QB3  | 48.6             | 49.0                |
|     | $NC_2N$     | + | $C_2$           | $\rightarrow$ | Ν              | + | $C_4N$                   | CBS-APNO | 45.2             | 45.6                |
|     | $\rm NC_2N$ | + | $\mathbf{C}_2$  | $\rightarrow$ | Ν              | + | $\mathrm{C}_4\mathrm{N}$ | CBS-4M   | 41.4             | 41.5                |
| 19  | $\rm NC_2N$ | + | $\rm C_2N$      | $\rightarrow$ | $\mathbf{N}_2$ | + | $\mathrm{C}_4\mathrm{N}$ | CBS-QB3  | -29.8            | -29.3               |
|     | $NC_2N$     | + | $C_2N$          | $\rightarrow$ | $N_2$          | + | $C_4N$                   | CBS-APNO | -29.4            | -28.9               |
|     | $\rm NC_2N$ | + | $\mathrm{C_2N}$ | $\rightarrow$ | ${\rm N}_2$    | + | $\mathrm{C}_4\mathrm{N}$ | CBS-4M   | -31.7            | -31.4               |
| 20  | $\rm NC_2N$ | + | $\mathrm{C_2H}$ | $\rightarrow$ | NH             | + | $\mathrm{C}_4\mathrm{N}$ | CBS-QB3  | 82.3             | 82.7                |
|     | $NC_2N$     | + | $C_2H$          | $\rightarrow$ | NH             | + | $C_4N$                   | CBS-APNO | 81.4             | 82.2                |
|     | $NC_2N$     | + | $C_2H$          | $\rightarrow$ | NH             | + | $C_4N$                   | CBS-4M   | 78.0             | 78.4                |

Table S33: Adiabatic electron affinities and ionization potentials (in eV) of C<sub>4</sub>N and C<sub>6</sub>N computed with various CBS protocols. Notice that, out of these protocols, the CBS-QB3 EA-estimates are the closest to the experimental values  $EA_{C_2N} = 2.74890 \pm 0.00010 \,\text{eV}$ ,  $EA_{C_4N} = 3.1113 \pm 0.00010 \,\text{eV}$  and  $EA_{C_4N} = 3.3715 \pm 0.00010 \,\text{eV}$ .<sup>20</sup>

| Method   | $EA_{C_2N}$ | $IP_{C_2N}$ | $EA_{C_4N}$ | $IP_{C_4N}$ | $EA_{C_6N}$ | $IP_{C_6N}$ |
|----------|-------------|-------------|-------------|-------------|-------------|-------------|
| CBS-QB3  | 2.7615      | 10.8166     | 3.1351      | 9.6913      | 3.4804      | 8.9994      |
| CBS-APNO | 2.7728      | 10.8178     | 3.2506      | 9.6332      | 3.5648      | 8.9491      |
| CBS-4M   | 3.0115      | 11.1315     | 3.4596      | 10.0462     | 3.7693      | 9.5614      |