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Section S1: Additional PL characterization of nanowire bundles 

 

Figure S1: (a) Confocal microscopy PL image of 10 nm nanowire bundles (circled in red), excited 
at 473 nm. (b) Normalized PL spectra of the bundles in (a), showing homogeneity. 

 

 

Figure S2: Normalized time-resolved PL (TRPL) of bundles of 10 nm nanowires in solution.  
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Section S2: Supplementary stroboSCAT Figures 

 

Figure S3: Transverse stroboSCAT profiles of 10 nm nanowire bundle after excitation near a 
sidewall. The profile expands from a standard deviation of approximately 90 nm initially to 145 
nm after 0.4 ns, for a diffusivity of approximately 0.2 cm2/s, substantially smaller than the 
longitudinal diffusivity. After 0.4 ns the excitations reach the far sidewall, and the profiles no 
longer provide useful information. Note that the colors correspond to different delay times and 
the horizontal axis scale is different than in Figure 2e. 

 

Figure S4: stroboSCAT diffusion data from Figure 2f, with an attempted fit to a power law, 
𝐷(𝑡) = 𝐷&𝑡'(). The fit is poor. 
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Figure S5: Measured diffusion decay time as a function of pump laser fluence. If the initial rapid 
diffusion were an artifact of annihilation, we would expect the decay time to depend on fluence, 
but that is not seen to be the case. 

Section S3: Model of Nanowire Diffusion with Trapping 

We start with Equation 2 of the main text, and the following initial conditions: the mobile carriers have a 
Gaussian distribution with variance σ0

2, which is imparted by the pump pulse, and there are no trapped 
carriers. Make the equations dimensionless by defining σ0 as the unit of length and 1/kfl as the unit of 

time. The value of σ0 is measured in the initial distribution, while )
*+,

= 2.1	ns is taken from the fastest 

component of the TRPL of 10 nm nanowires (Figure S4). Let 𝑘 ≡ 𝑘56/𝑘89  be the dimensionless trapping 
rate, and D be the dimensionless diffusivity. The equations are now: 

 𝜕𝑝<
𝜕𝑡 = 𝐷

𝜕=𝑝<
𝜕𝑥= − 𝑝< − 𝑘𝑝<	

𝜕𝑝56
𝜕𝑡 = 𝑘𝑝< − 𝑝56, 

  

(S1) 

with initial conditions 

 𝑝<(𝑥, 𝑡 = 0) =
1
√2𝜋

𝑒(EF/=	

𝑝56(𝑥, 𝑡 = 0) = 0. 

  

(S2) 
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Equations S2 can be solved exactly. For mobile carriers, the solution is an expression for ordinary 
diffusion times a decaying exponential with rate 1+k: 

 
𝑝<(𝑥, 𝑡) =

G
H IF
F(JKFLM)

N=O()P=Q5)
𝑒(()P*)5𝜃(𝑡),  

(S3) 

where θ(t) is the Heaviside step function. The equation for trapped carriers can be solved as well, by 
taking the Fourier transform, re-arranging, and taking the inverse Fourier transform. We find that the 
result is a convolution between a decaying exponential of rate 1 and the expression 𝑘𝑝<(𝑥, 𝑡): 

 𝑝56(𝑥, 𝑡) = ∫ 𝑘𝑝<(𝑥, 𝜏)𝑒U(5𝜃(𝑡 − 𝜏)𝑑𝜏
W
(W .  (S4) 

Plugging in Equation S3 for 𝑝<(𝑥, 𝑡) we see that Equation S4 can be solved, but not in a closed form.  
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where Erf() is the error function. This is not insightful, but it allows us to plot the total population, 
𝑝(𝑥, 𝑡) = 𝑝<(𝑥, 𝑡) + 𝑝56(𝑥, 𝑡) and Fit it to a Gaussian, as shown in Figure S8a for parameters D=5 and 
k=1 at time t=1. We find that a Gaussian fit is appropriate, even for these parameters, which were 
chosen to accentuate the way in which the model can deviate from a Gaussian. For lower values of the 
ratio D/k, the result is even more Gaussian-like. The profile can be fit to a Gaussian to extract the 



S6 
 

variance, σ2. Plotted as a function of time, we see it fits well to a decaying exponential (Equation 1, main 
text). 

 

Figure S6: Results of the diffusion trapping model (Equations S1-5). (a) Total exciton profile at 
time t=1 for parameters D=5 and k=1. Profiles are fit to a Gaussian to extract the variance, 
which is plotted as a function of time (b) and fit to an exponentially decaying diffusivity 
(Equation 1, main text). 

The model clearly predicts results that look like our observations. Next, we use the fitting results 
to extract the values of various parameters in the model. The fits shown in Figure S8 return 𝜎& = 0.96 
(which is close to the real value of 1), 𝐷 = 5.7 (which is slightly higher than the real value of 5), and 𝜏p =
0.45, which is significantly different from the value of 𝑘() = 1. We fit the model for many values of D 
and k in order to create a map between those variables and the measured values, D0 and τd. 
Dimensionless numbers were converted to real numbers by measuring the initial distribution to get σ0 
and using the lifetime as measured with TRPL to get kfl. 

While the intrinsic diffusivity, D, is of interest, the trapping rate, ktr, is not so physically 
meaningful. We convert the trapping rate to a trap density with a second model, described here. We 
consider a square bundle of n by n nanowires, each of length l. The linear trap density is fixed to be 
some λ. For each nanowire, the number of traps on that nanowire is drawn from a Poisson distribution 
of mean 𝑙𝜆, and the traps are placed randomly along that nanowire. An exciton is initialized at an 
arbitrary position, and at each time step hops either left or right along its nanowire. With some 
probability Dr, it may hop in each of the orthogonal directions. This number is ratio of the transverse to 
the longitudinal diffusivity. Periodic boundary conditions are used. The simulation runs until the exciton 
encounters a trap. Running many such simulations produces a distribution of trapping times, and hence 
an average trapping time, 〈𝜏56〉. 

For given values of λ and Dr, 20,000 trajectories were run. The system size was set to 𝑛 = 30 
and 𝑙 = 20/𝜆, which was found to be large enough so that the results converged. Figure S9 shows the 
value of 〈𝜏56〉 vs. λ on a log-log plot for several values of Dr: in all cases, the data lie on a line of slope -1. 



S7 
 

This implies that 〈𝜏56〉 ∝ 1/𝜆, although the proportionality constant depends on Dr. We estimate Dr 
using the transverse diffusion measurement, shown in Figure S5. Those data, when fit to Gaussians, 
indicate a transverse diffusivity of 𝐷5 = 0.22 ± 0.13	cm=/s. The longitudinal intrinsic diffusivity for that 

same bundle was 𝐷9 = 0.76 ± 0.09	cm=/s, hence 𝐷6 =
QM
Q,
= 0.29 ± 0.17. Using this value, we can 

convert the trapping rate to a linear trap density. Eleven nanowire bundles were studied. Box plots of 
the intrinsic diffusivity, trapping time, and inverse linear trap density are shown in Figure S10.  

 

Figure S7: Results of diffusion simulation to relate mean trapping time to linear trap density. 
Mean trapping time is plotted vs. linear trap density on a log-log plot, for several values of Dr. 
Each data set fits well to a line of slope -1. 

 

Figure S8: Box plots of several values measured for each of 11 nanowire bundles: (a) intrinsic 
longitudinal diffusivity D0, (b) trapping time 1/ktr, and inverse linear trap spacing 1/λ. 
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Section S4: Supplementary Linear Absorption Figures 

 

Figure S9: (a) A single large nanowire (circled in red), hundreds of nanometers in width and 
about 20 µm long. (b) Polarization-resolved absorption spectrum of that nanowire. 0° is defined 
as parallel to the long axis of the nanowire. 

Section S5: Supplemental Transient Absorption Figures 

 

Figure S10: Normalized TA spectra of 10 nm CsPbBr3 nanowires in solution, both bundled (solid 
lines) and isolated (dashed lines), at time delays 1 ps and 10 ps (offset for clarity). The 
timescales were found to be similar, and the spectra are identical up to a slight red-shift of the 
ground state bleach upon bundling. This is not surprising given the weak inter-nanowire 
coupling observed in stroboSCAT measurements. 
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Figure S11: (a) Evolution association spectra (EAS) of TA measurements on 10 nm CsPbBr3 
nanowire bundles in solution. (b) Normalized EAS, in order to accentuate how the shape of the 
spectrum changes over time. 

  

Figure S12: Inverse of the GSB signal as a function of time, for several pump fluences. Dashed 
lines guide the eye, and show that the data are roughly linear at early times, indicative of 
biexciton recombination. 

 

Section S6: Polarization Anisotropy Derivations and Supplementary Figures 

Consider light of frequency ωex incident on a nanowire whose width is much smaller than the 
wavelength of the light. Let the nanowire have dielectric constant 𝜖|}(𝜔GE), and the surrounding 
medium have dielectric constant 𝜖<. As a consequence of Maxwell’s equations, the electric field for 
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light polarized along the short axis of the nanowire is reduced by 2𝜖</(𝜖< + 𝜖|}(𝜔GE)).1,2 The same is 
true for light emitted at frequency ωem, so the nanowire excitation and emission can both be cast in the 
following forms2: 

 𝑃(𝜔GE) = 1 + 𝜅(𝜔GE)(𝑐̂ ⋅ 𝑒̂GE)	
𝑃(𝜔G<) = 1 + 𝜅(𝜔G<)(𝑐̂ ⋅ 𝑒̂G<), 

  

(S6) 

where 𝑐̂ is the unit vector along the nanowire axis and 𝑒̂ is the polarization of the exciting or emitted 
light. κ has the form 

 𝜅(𝜔) = (��P���(�))F

���F
− 1.  (S7) 

 In order to calculate the intensity for a given configuration, such as IHV, we first fix the directions 
of 𝑒̂GE and 𝑒̂G< and then take the product 𝑃(𝜔GE)𝑃(𝜔G<). Define the excitation propagation direction 
as 𝑥�, the emission propagation direction as 𝑦�, and the vertical direction as 𝑧̂. Letting the nanowire have 
orientation given by polar angle θ and azimuthal angle φ, the four intensities are: 

 𝐼�� = (1 + 𝜅GE cos= 𝜃)(1 + 𝜅G< cos= 𝜃)	
𝐼�� = (1 + 𝜅GE cos= 𝜃)(1 + 𝜅G< sin= 𝜃 cos= 𝜙) 
𝐼�� = (1 + 𝜅GE sin= 𝜃 sin= 𝜙)(1 + 𝜅G< cos= 𝜃) 
𝐼�� = (1 + 𝜅GE sin= 𝜃 sin= 𝜙)(1 + 𝜅G< sin= 𝜃 cos= 𝜙). 

  

(S8) 

For an isotropic distribution of nanowires we take the average over θ, φ, and easily verify that 𝐼�� ≥
𝐼�� = 𝐼�� = 𝐼��. The polarization anisotropy between IVV and IVH is: 

 𝐴� ≡
���(���
���P���

= ��I���
)�P���IP����P=��I���

.  (S9) 

The optical frequency dielectric constant of cyclohexane, which is the solvent we use for unbundled 10 
nm nanowires, is 2.02. The optical frequency dielectric constant of CsPbBr3 is not well known, but 
computations indicate that it is about 5.3 Using these values we get 𝜅GE = 𝜅G< = 2.02 and 𝐴� = 0.09. 
For comparison, the measured value based on the PL peak in Figure 5 is 𝐴� = 0.14. Clearly, something 
else is at work. 

We consider that the absorption and emission TDMs could be anisotropic. For a transition at a 
given frequency, let the TDM strength be 𝑑|| for light polarized along the long axis of the nanowire, and 
𝑑� for light polarized along the short axis of the nanowire. We then have: 

 𝜅(𝜔) =
p||
F(��P���(�))F

�p�
F��F

− 1 .  (S10) 
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If the occupation of band-edge states is non-uniform that would also modify κ, but we do not consider 
this possibility because the TAM measurements in the main text indicate that the energy shift between 
states of different polarizations is only about 5 meV, which is small compared to the thermal energy at 
room temperature. 

We also consider orientational anisotropy of the nanowires. Let the orientational distribution be 
isotropic in φ, but have some polar probability distribution function 𝑓(𝜃), where the normalization 
condition is 

 ∫ 𝑓(𝜃) sin 𝜃𝑑𝜃 = 1O/=	
& .  (S11) 

Define the following moments of the distribution: 

 
𝑚= ≡ � 𝑓(𝜃) cos= 𝜃 sin 𝜃𝑑𝜃

O/=

&
	

𝑚� ≡ � 𝑓(𝜃) cos� 𝜃 sin 𝜃𝑑𝜃
O
=

&
. 
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For a uniform distribution, 𝑚= = 1/3 and 𝑚� = 1/5.  

Combining the two effects described above, we have the following emission intensities: 

 𝐼�� = 1 + 𝜅GE𝑚= + 𝜅G<𝑚= + 𝜅GE𝜅G<𝑚�	

𝐼�� = 1 + 𝜅GE𝑚= + 𝜅G<
1 −𝑚=

2 + 𝜅GE𝜅G<
𝑚= −𝑚�

2  

𝐼�� = 1 + 𝜅GE
1 −𝑚=

2 + 𝜅G<𝑚= + 𝜅GE𝜅G<
𝑚= −𝑚�

2  

𝐼�� = 1 + 𝜅GE
1 −𝑚=

2 + 𝜅G<
1 −𝑚=

2 + 𝜅GE𝜅G<
1 − 2𝑚= +𝑚�

8 . 
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We cannot make much progress without knowing something about the orientational distribution, but it 
is enlightening to consider the anisotropy between IVH and IHV: 

 𝐴¡6¢££ =
���(���
���P���

= ¤(���(��I)(<F()/¤)
�P(���P��I)()P<F)P=��I���(<F(<¥)

.  (S14) 

The anisotropy is proportional to both (𝜅G< − 𝜅GE) and also (𝑚= − 1/3). Therefore, fluorescence 
anisotropy between IVH and IHV (which we observe) implies there must be orientational anisotropy and 
there must be a difference between κ for excitation and emission. We do not have enough information 
to determine the magnitude of this difference, but we can consider possible causes. It could be because 
𝜖|} is a strong function of frequency, in which case the fact that excitation and emission are at different 
frequencies would produce different values of κ. However, the amount of anisotropy is uniform in 
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emission frequency, implying that anisotropic TDMs are the cause: 𝑑|| ≠ 𝑑�. We cannot disentangle the 
effects of absorption and emission anisotropy, however repeating the measurement with 408 nm 
excitation light (Figure S16) results in a slightly different amount of anisotropy: AV = 0.12. This implies 
that anisotropy in the absorption TDM is at least partially responsible for our observations. 

 In order to control for variations in signal strength between the four polarization configurations, 
a small control molecule (a derivative of triphenylsulfonium) was used. After measuring a PL spectrum of 
the nanowires, we immediately measured the time-resolved PL of the control molecule for the same 
excitation and emission polarizations. Because it rotates rapidly, the control molecule should not display 
any anisotropy in its emission. Any observed anisotropy is therefore due to differences in the excitation 
or detection efficiency. We found that rotating the laser polarization did not change the PL signal 
strength for the control molecule but rotating the emission polarizer did change the signal strength 
because the efficiency of light through the emission monochromator is wavelength- and polarization-
dependent. The ratio of the control molecule’s PL spectra for a vertically vs. horizontally aligned 
emission polarizer gives a correction factor, G(l). In the equations above, the intensities IHV and IHH are 
not the raw counts, but have been scaled by G(l). 

 

Figure S13: Polarized PL spectra of 10 nm diameter nanowires in cyclohexane, 408 nm 
excitation. The first letter of the legend indicates the polarization of the excitation beam 
(vertical or horizontal) and the second letter indicates the polarization of the measured 
emission. The anisotropy between VV and VH is 0.12, which is slightly less than what we 
measured when exciting at 465 nm, but still more than what we expect from purely 
electrodynamic effects. 

Section S7: Exciton fine structure model 

The polarization-resolved linear and non-linear absorption measurements conducted in 10 nm 
perovskite nanowires (NWs) clearly indicate that the lowest bright exciton level has its transition dipole 
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moment parallel to the NW axis.  This property is similar to observations reported previously on 
polarization properties of perovskite nanocrystals (NCs) with nominally tetragonal  symmetry that have 
nearly cubic shape.4,5  As shown in Sercel et. al.6 early interpretations of this level order were based on 
the unjustified assumption  that the tetragonal crystal field that splits the upper conduction band is 
negative.   The fine structure created by the electron hole exchange interaction in cube-shaped CsPbBr3 
perovskite NCs with the correct (positive) sign of crystal field, as determined by calculations using 
density functional theory, results in a level order not consistent with the experimentally observed fine 
structure.6  

Currently there are two viable theoretical models that describe the experimentally observed level 
structures in nearly cube-shaped CsPbBr3 perovskite nanocrystals.  The first one (the Rashba model)7 is 
connected with the effect of Rashba terms that flips the level ordering in the weak confinement regime,6 
when the Rashba contribution to the fine structure becomes larger than the exchange contribution.  The 
second model is connected with effect of shape anisotropy via the long-range exchange interaction.8 

 In order to describe the ~5 meV splitting observed in NWs within the Rashba model, we would need to 
assume that the Rashba coefficient in NWs is ~2 -3 times larger than that required to describe the ~1 
meV splitting in excitons in cube-shaped NCs; moreover, the direction of the inversion symmetry 
breaking would be required to be parallel to the NW axis. 

Here we apply the second model, connected with the effect of shape asymmetry in conjunction with 
long-range exchange, to the case of nanowires.   As demonstrated by Nestoklon et. al.,8 the long-range 
exchange interaction acts to create a splitting between the exciton sub-levels when there is a shape 
asymmetry.  To explore this effect for nanowires, we model the NW as a rectangular prism with equal x 
and y dimensions, 𝐿E = 𝐿¨ = 𝐿, but with an unequal z dimension, Lz.  As shown by Cho9, the long-range 
exchange energy of a given exciton state, Xi can be written in terms of the Coulomb energy of the 
polarization associated with the exciton state: 

𝐻ª« = 	∬ ­−∇⃗̄̄6⃗J ∙ 𝑃⃗̄ª«(𝑟))³
∗

�
)

�µ	|6⃗J(	6⃗F	|
	­−∇⃗̄̄6⃗FJ ∙ 𝑃⃗̄ª«(𝑟=)³.                              (S15) 

Here, the exciton polarization is equal to the transition dipole density [6], 

𝑃⃗̄ª«(𝑟⃗) = 	−𝑖	
Gℏ

<¸¹º
 𝑓(𝑟, 𝑟)	𝑝¯̄̄ ⃗ª«.                                       (S16) 

In this expression, 𝑓(𝑟G, 𝑟»)   is the envelope function of the exciton, while 𝑝ª«  is its associated unit-cell-
level transition dipole matrix element.6 In the expressions above, Eg is the band gap, 𝜖W is the high 
frequency dielectric constant, and mo is the free electron mass.  Within the weak confinement regime, 
we calculate the long-range exchange energy of the exciton states whose transition dipole moment is 
polarized parallel to the axis of elongation (z) of the NW and do the same for the states whose transition 
dipole moments are perpendicular to the axis of elongation.   The envelope function for the ground 
exciton in the weak confinement regime is written,6 

𝑓(𝑟G, 𝑟»)	=	𝜙)£(0) 𝜓½(𝑋, 𝑌, 𝑍)                  (S17) 
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Here 	𝜙)£ is the hydrogenic ground state wavefunction in the electron-hole relative coordinate, while  
𝜓½ is the ground center-of-mass envelope function for an exciton confined within a right rectangular 
prism with dimensions 𝐿E = 𝐿¨ = 𝐿	 ≠ 𝐿Á.  This is given in terms of the exciton’s center-of-mass 
coordinates X, Y, Z as6, 

𝜓½(𝑋, 𝑌, 𝑍) = 	 Â
Ã

ÄFÄÅ
Æ
)/=

𝐶𝑜𝑠 ÊO	ª
Ä
Ë 𝐶𝑜𝑠 ÊO	Ì

Ä
Ë 𝐶𝑜𝑠 ÊO	Í

ÄÅ
Ë    (S18) 

We find, in agreement with Nestoklon et al.,8 that the exciton with a transition dipole moment parallel 
to the axis of elongation has lower energy than the exciton sublevel whose transition dipole moments 
are parallel to the short axis.6,8 The resulting energies are plotted versus the ratio, Lz/L, between the z-
dimension of the NW, Lz, and the transverse dimension, L, of the NW in Figure S18: 

 

Figure S14: Long range exchange energy for exciton sub-levels in a right rectangular prism of length Lz 
with transverse dimension L.  For Lz/L > 1, the exciton sub level with transition dipole moment along z is 
lower in energy than the exciton sublevels with transversely polarized transition dipole moments.  In the 
limit of large ratio Lz/L, the splitting between the z exciton and the transverse exciton approaches 
ℏ𝜔ÄÎ/2.  When   Lz/L = 1, the energies of the three exciton sub-levels with transition dipole moments 
along x, y and z are degenerate and equal to ℏ𝜔ÄÎ/3. 

 

The energy scale of the splitting is the longitudinal-transverse splitting of the bulk exciton, ℏ𝜔ÄÎ  where 
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ℏ𝜔ÄÎ =

�
¤�µÏIÐ

¹Ñ
<Ò
ÓℏG¹ºÔ

=
.  

(S19) 

In this expression Ep is the Kane energy, Eg is the band gap, 𝜖W is the high frequency dielectric constant, 
mo is the free electron mass and ax is the exciton Bohr radius.  The value of  ℏ𝜔ÄÎ  in bulk CsPbBr3 was 
recently measured as  5.4  meV.10  This value is consistent with  the measured effective mass and 
inferred exciton Bohr radius for bulk CsPbBr3

11  using a high frequency dielectric constant  𝜖W  = 4.8.12 

Inspection of Fig. S18 shows that for large aspect ratios, Lz/L >> 1, the splitting between the z 
polarized exciton and the transverse excitons approaches ℏ𝜔ÄÎ/2, with the z-polarized exciton being 
lowest in energy, qualitatively consistent with the observed splitting measured in the NW experiments.   

The above splitting estimation does not take into account dielectric corrections to the long-
range exchange that will drive the transverse exciton energy up by an amount proportional to (k-
1)/(k+1) owing to image charge effects, while the z exciton energy will be unaffected.  Here, k is the 
ratio of the dielectric constant inside the NW to that of the surrounding medium. Calculating the image 
charge effect for a cylindrical nanowire,13 we estimate a 29% increase in the fine structure splitting for  
k=2.5, leading to a total splitting of ~ 3.5 meV. In addition, in the nanowire it is expected that the two-
dimensional quantum confinement will enhance the exciton binding energy, decreasing the exciton Bohr 
radius and therefore increasing the value of ℏ𝜔ÄÎ  as shown in Equation S19. In this case, as the exciton 
binding energy increases and the exciton radius decreases, the exciton is pushed into the weak 
confinement regime where the splitting is essentially independent of the lateral size. 

Our modelling shows that the polarization dependent splitting observed in CsPbBr3 NWs is qualitatively 
consistent with splitting due to long-range exchange in conjunction with the shape anisotropy of the 
NW.  DFT calculations indicate that crystal field effects cannot explain the observed polarization 
dependent splitting.6 
 
The magnitude of the splitting observed, 5 meV, is ~ 40% larger than would be expected from the long-
range exchange splitting in the weak confinement limit (~ 3.5 meV).  This suggests that dielectric 
confinement effects and the two-dimensional confinement of the exciton in the NW may cause   
enhancement of the exciton binding energy relative to bulk excitons with a concomitant increase in the 
long-range exchange splitting energy.  
Another explanation could be an increase of the Rashba term’s magnitude, or a combination of both 
effects discussed above.  
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