Electronic Supplementary Information

Iron Phosphide Doped-porous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

Nazgol Norouzi, Fatema A. Choudhury, Hani M. El-Kaderi*

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006,

United States

E-mail: helkaderi@vcu.edu; Fax: +1 804 828-8599; Tel: +1 804 828-7505

Electrochemistry

Oxygen reduction reaction (ORR) in an alkaline electrolyte is expected to proceed via the combination of two reaction pathways, a two-step 2e⁻ and a single-step 4e⁻ reactions, as shown below:

A direct four-electron pathway:
$$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$$
 (1)

A two-step two-electron pathway:
$$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$$
 (2)

$$HO_2^{-} + H_2O + 2e^{-} \longrightarrow 3OH^{-}$$
(3)

The first reaction pathway (eq.1) is kinetically fast and ensures higher efficiency as appose to the two-step two-electron reaction pathway (eq.2 and 3).

ORR in an acidic electrolyte proceeds via the combination of two reaction pathways, a two-step 2e⁻ and a single-step 4e⁻ reactions, as shown below:

A direct four-electron pathway:	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	(4)
---------------------------------	---	-----

A two-step two-electron pathway: $O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$ (5)

$$H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O \tag{6}$$

$$2H_2O_2 \longrightarrow 2H_2O + O_2 \tag{7}$$

Figure S1. Schematic of an alkaline and acidic half-cell electrochemistry setup.

Surface Morphology

Figure S2. (a) SEM images (b) EDX elemental mapping of PFeC-800.

Figure S3. (a) SEM image of PFeC-900 without platinum sputter coating (b) EDX elemental mapping of PFeC-900.

Figure S4. (a) Deconvolution O 1s spectra for PFeC-900, (b) XRD pattern of PFeC-900 and Fe₂P (JCPDS: 51-0942).

Scherrer equation:
$$B(2\theta) = \frac{k\lambda}{L\cos\theta}$$
 (8)

Where Scherrer constant k is 0.9, λ is 0.15418 nm.

Figure S5. (a) SEM images (b) EDX elemental mapping for PFeC-1000.

Figure S6. (a) SEM images (b) EDX elemental mapping for PC-900.

Figure S7. (a) Survey spectra of PFeC-800 (b) Deconvoluted C 1s spectra (c) Deconvoluted P 2p spectra (d) Deconvoluted Fe 2p spectra (e) Deconvoluted O 1s spectra.

Figure S8. (a) Survey spectra of PFeC-1000 (b) Deconvoluted C 1s spectra (c) Deconvoluted P 2p spectra (d) Deconvoluted Fe 2p spectra (e) Deconvoluted O 1s spectra.

Figure S9. (a) Survey spectra of PC-900 (b) Deconvoluted C 1s spectra (c) Deconvoluted P 2p spectra (d) Deconvoluted O 1s spectra.

Table S1. Surface and bulk chemical composition of PFeC-800, 900, 1000 and PC-900 collected from XPS, EDX and the iron weight percent collected from ICP-OES.

Sample	C (At%)	O (At%)	P (At%)	Fe (At%)
	XPS/EDX	XPS/EDX	XPS/EDX	XPS/EDX/ICP
PFeC-800	89.2/86.6	9.2/1	1.2/2.9	0.4/9.5/20(wt%)
PFeC-900	90.6/84	8/2.1	1.1/4.1	0.4/9.8/22(wt%)
PFeC-1000	88.9/88.4	9.5/1.9	1.1/3.1	0.5/6.6/30(wt%)
PC-900	95.4/92	3.6/7	1/1	0/0/0.5(wt%)

Electrochemistry

Figure S10. The CV of (a) PFeC-900 and (b) Pt/C (c) PFeC-800, (d) PFeC-1000 (e) PC-900 in $\rm N_2$ and $\rm O_2$ saturated 0.1 M KOH using RDE at scan rate of 50 mV s^{-1}

Figure S11. The polarization curves for PFeC-900 in O_2 saturated 0.5 M H₂SO₄ at rotation rates 100-2500 rpm

Figure S12. The CV of (a) PFeC-900 and (b) Pt/C in N_2 and O_2 saturated 0.5 M $\rm H_2SO_4$ using RDE at scan rate of 50 mV s^{-1}

Figure S13. Comparison between onset potentials in O_2 saturated (a) 0.1 M KOH and (b) 0.5 M H_2SO_4 using RDDE at 1600 rpm and scan rate of 10 mV s⁻¹.

Table S2. Comparison of preparation methods and ORR activities of reported phosphorusdoped, Iron phosphorous-doped electrocatalysts with PFeC-900 and PC-900 in 0.1M KOH (Al.) medium or 0.1 M HClO₄ / 0.5 M H₂SO₄ (Ac.). (If the exact values are not mentioned in the paper, an estimated number from the corresponding graphs is used for this Table.)

~ .			~~ 10			~ ^	
Catalyst (given name)	Electrolyte	Onset Potential catalyst/Pt/C (V vs. RHE)	Half wave Potential catalyst/Pt/C (V vs. RHE)	Limiting Current Density (mA cm ⁻²)	Electron Transfer Number, n	Surface Area (m ² g ⁻¹)	Reference
PFeC-900	Al.	1.01/1.04	0.88/0.90	-7.29 RRDE	3.97	967	
PFeC-900	Ac.	0.95/1.0	0.71/0.77	-6.61 RRDE	3.98	967	work
PC-900	Al.	0.95/1.04	0.79/0.88	-8.51 RRDE	3.88	1137	This
PC-900	Ac.	0.81/1.0	0.6/0.77	-6.22 RRDE	3.5	1137	
Fe-P-C	Al.	0.95/0.97	~ 0.78	-5.01 RRDE	3.61	1371	1
Fe-P-C	Ac.	0.84/~0.97	~ 0.6	-5.80 RRDE	3.8	1371	1
GPFe	Al.	0.93/0.96	~ 0.82	-6.72 RRDE	3.6	612.15	ſ
GPFe	Ac.	0.62/0.84	~ 0.5/0.8	-4.11 RRDE	3.84	612.15	2
Fe ₂ P(3nm) @BC	Al.	0.96/0.97	0.82/	-5.18 RDE	3.9	314.9	2
Fe ₂ P(3nm) @BC	Ac.	0.78/0.89	0.65/0.72	4.1 RDE	3.7	314.9	5
FeP@PNC- 900	Al.	0.92/0.92	0.84/0.82	-5.50 RDE	4.1	724	4
Р(Со)-С	Al.	~ 0.85/0.97	~ 0.75/0.82	~ -6.1 RRDE	3.79	1349	5
POMC-3	Al.	~ 0.87/0.92	0.74/0.78	~ -5.50 RDE	3.91	1182	6
FeP@NPC	Al.	$\Delta V=15 \text{ mV}$	$\Delta V = 15 \text{ mV}$	-5.85 RDE	4	381	7
P-doped graphite/GC	Al.	~0.87/0.98	~0.72/0.85	-5.50 RDE	3	3986	8

References

- (1) Singh, K. P.; Bae, E. J.; Yu, J. S. Fe-P: A New Class of Electroactive Catalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137 (9), 3165–3168.
- (2) Razmjooei, F.; Singh, K. P.; Bae, E. J.; Yu, J.-S. A New Class of Electroactive Fe- and P-Functionalized Graphene for Oxygen Reduction. J. Mater. Chem. A 2015, 3 (20), 11031– 11039.
- (3) Ye, Y.; Duan, W.; Yi, X.; Lei, Z.; Li, G.; Feng, C. Biogenic Precursor to Size-Controlled Synthesis of Fe2P Nanoparticles in Heteroatom-Doped Graphene-like Carbons and Their Electrocatalytic Reduction of Oxygen. *J. Power Sources* **2019**, *435*, 226770.
- (4) Xu, X.; Shi, C.; Chen, R.; Chen, T. Iron Phosphide Nanocrystals Decorated in Situ on Heteroatom-Doped Mesoporous Carbon Nanosheets Used for an Efficient Oxygen Reduction Reaction in Both Alkaline and Acidic Media. *RSC Adv.* 2017, 7 (36), 22263– 22269.
- (5) Wu, J.; Yang, Z.; Li, X.; Sun, Q.; Jin, C.; Strasserd, P.; Yang, R. Phosphorus-Doped Porous Carbons as Efficient Electrocatalysts for Oxygen Reduction. J. Mater. Chem. A 2013, 1 (34), 9889–9896.
- (6) Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J. Am. Chem. Soc. 2012, 134 (39), 16127– 16130.
- (7) Zhang, R.; Zhang, C.; Chen, W. FeP Embedded in N, P Dual-Doped Porous Carbon Nanosheets: An Efficient and Durable Bifunctional Catalyst for Oxygen Reduction and Evolution Reactions. *J. Mater. Chem. A* **2016**, *4* (48), 18723–18729.
- (8) Liu, Z. W.; Peng, F.; Wang, H. J.; Yu, H.; Zheng, W. X.; Yang, J. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium. *Angew. Chemie- Int. Ed.* **2011**, *50* (14), 3257–3261.