Exploring the Kinetic Limitations Causing Unusual Low-Voltage Li Reinsertion in either Layered or Tri-Dimensional Li₂IrO₃ Cathode Materials

Biao Li ^{1,2,3†}, Gaurav Assat ^{1,2,3†}, Paul E. Pearce ^{1,2,3}, Victoria A. Nikitina ⁴, Antonella Iadecola ², Charles Delacourt ^{2,5}, Jean-Marie Tarascon ^{1,2,3*}

¹Chimie du Solide et de l'Energie—UMR CNRS 8260, Collège de France, Paris, France.
²Réseau sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, Amiens, France.
³Faculty of Science and Engineering, Sorbonne University, Paris, France.
⁴Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 Moscow, Russia.

† These authors contributed equally.

Figure S1. *Ex situ* XRD patterns for pristine α -Li₂IrO₃ (in black), and the phases discharged to 2.4V at 1st cycle (in red) and after potentiostatic holding at 2.4V (in blue) with a C/50 current cutoff.

Figure S2. (a) The L_3 -edge XANES of Ir collected on delithiated α - and β -Li₁IrO₃. (b) The corresponding k_3 -weighted EXAFS oscillations. (c) Magnitude of Fourier Transform of k³-weighted EXAFS of α - and β -Li₁IrO₃.

Figure S3. (a) and (b) show the SEM images of α -Li₂IrO₃ powder. (c) and (d) show the SEM images of α -Li₂IrO₃ electrode after cycling in the potential interval 1.65 – 3.9 V (5 cycles). The exfoliation of the particles after cycling demonstrates there should be a very large strain during charge and discharge.

Figure S4. CVs of β -Li₂IrO₃ electrodes at low (a) and high (b) scan rates. (c) Current transients registered upon delithiation for the potential step from 3.380 to 3.390 V (diffusion in the Li-rich phase) and upon lithiation for the potential step from 3.480 to 3.470 V (diffusion in the Li-poor phase). (d) CVs with 2.0 and 1.65 V cathodic potential limits at 0.1 mV·s⁻¹.

Figure S5. (a) shows the single-phase region at 3.7 - 3.9 V for β -Li₂IrO₃ and (b) shows the impedance spectrum registered at 3.7 V (symbols) and the fit to the equivalent circuit (solid line). The equivalent circuit comprises two RC elements, R_{SEI}/C_{SEI} and R_{ct}/C_{dl} , which account for the resistance and capacitance of surface layers (SEI) and for the charge transfer resistance and the double-layer capacitance, correspondingly. Diffusion is modelled by a spherical Warburg element (resistance and capacitance of diffusion - R_d and C_d). Parameter values: $R_{SEI} = 46.8 \Omega$, $C_{SEI} = 7 \mu$ F, $R_{ct} = 151 \Omega$, $C_{dl} = 40 \mu$ F, $R_d = 946 \Omega$, $C_d = 0.37$ mF.