Supporting information description:

Figure S1 Transmembrane segment prediction for sugar transporters.

Figure S2 Predicting the Xltr1p structure using 4GBY as template (silver) with SwissModel and using 6H7D_A as template with MODELLER predicted by HHpred as template (green) Figure S3 ConSurf analysis of the evolutionary conservation of the amino acids in Xltr1p. Figure S4 The interaction analysis between Xltr1p and xylose molecule by ligplot.

Figure S5 Predicted transmembrane structures of mutants: a. I299A b. F300A c. N326W d. N326Y. Original amino acid residues were displayed in green color, and mutated amino acid residues were displayed in red color.

Figure S6 Kinetics of glucose/ _D-xylose consumption($q_{glucose}$, q_{xylose}) for Xltr1p (square), N326F^{Xltr1} (triangle) and BSW4PP(circle). For kinetics for glucose, the cells were cultivated in SD medium with 20 g/L _D-xylose at 30 °C for 24h, 60h, and 72h with an initial OD=0.1. For kinetics for _D-xylose, the cells were cultivated in SD medium with 20 g/L _D-xylose at 30 °C for 30, 60, and 120 minutes with an initial OD=20.

Figure S7 The result on docking study on Xltr1p or its variant N326F with glucose. The origin amino acid residue was displayed in green color, and mutated amino acid residue was displayed in red color.

Table S1 Sequence similarities among transporters used in this study.

Table S2 Primers used in this study.

Figure S1 Transmembrane segment prediction for sugar transporters.

Figure S2 Predicting the Xltr1p structure using 4GBY as template (silver) with SwissModel and using 6H7D_A as template with MODELLER predicted by HHpred as template (green)

Figure S3 ConSurf analysis of the evolutionary conservation of the amino acids in Xltr1p.

Figure S4 The interaction analysis between Xltr1p and xylose molecule by ligplot.

Figure S5 Predicted transmembrane structures of mutants: a. I299A b. F300A c. N326W d. N326Y. Original amino acid residues were displayed in green color, and mutated amino acid residues were displayed in red color.

Figure S6 Kinetics of glucose/ _D-xylose consumption($q_{glucose}, q_{xylose}$) for Xltr1p(square), N326F^{Xltr1} (triangle) and BSW4PP(circle). For kinetics for glucose, the cells were cultivated in SD medium with 20 g/L _D-xylose at 30 °C for 24h, 60h, and 72h with an initial OD=0.1. For kinetics for _D-xylose, the cells were cultivated in SD medium with 20 g/L _D-xylose at 30 °C for 30, 60, and 120 minutes with an initial OD=20.

Figure S7 The result on docking study on Xltr1p or its variant N326F with glucose. The origin amino acid residue was displayed in green color, and mutated amino acid residue was displayed in red color.

Sequence Similarity	XylE	Gal2	Mgt01596	Gatr1p	Gltr1p
Xltr1p	28.57%	35%	37.55%	35.17%	29.18%

Table S1 Sequence similarities among transporters used in this study

Name of Primer	Nucleotide Sequence	
D39A-F	GCCACTGGCACCATTTCCGG	
D39A-R	ATATCCGTAGAGGACACCGC	
R132A-F	GCCTTCTTTGCCGGCTTC	
R132A-R	ACCAGCCAGGAACATGGGG	
Q288A-F	GCGGCGCTGCAGCAGCTGA	
Q288A-R	CAGGGCCATGCCGGTGAAC	
Q291A-F	GCGCAGCTGACGGGCATCAAC	
Q291A-R	CAGCGCCTGCAGGGCCATG	
Q292A-F	CAGGCGCTGACGGGCATCAAC	
Q292A-R	CAGCGCCTGCAGGGCCATG	
F298A-F	GCCATCTTCTACTACGGGACGCGG	
F298A-R	GTTGATGCCCGTCAGCTGC	
I299A-F	TTCGCCTTCTACTACGGGACGCGG	
F299A-R	GTTGATGCCCGTCAGCTGC	
F300A-F	GCCTACTACGGGACGCGGTA	
F300W-F	TGGTACTACGGGACGCGGTA	
F300Y-F	TACTACTACGGGACGCGGTA	
F300X-R	GATGAAGTTGATGCCCGTCAG	
Y301A-F	GCCGGGACGCGGTATTTCCAG	
Y301-R	GTAGAAGATGAAGTTGATGCCCGTC	

Table S2 Primers used in this study

Y302A-F	TACGCGACGCGGTATTTCCAG		
Y302-R	GTAGAAGATGAAGTTGATGCCCGTC		
N326A-F	GCCGTCGCCTCCACCATCC		
N326A-R	GATGCCCGCCGTGATCATG		
N326F-F	TTCGTCGCCTCCACCATCC		
N326W-F	TGGGTCGCCTCCACCATCC		
N326Y-F	TACGTCGCCTCCACCATCC		
N326X-R	GATGCCCGCCGTGATCATG		
W407A-F	GCGGTCGTCACCGGCGAAATC		
W407A-R	CGCGAGGGGGGCCCCAGG		
N434A-F	GCCTGGGCCATTGCCTACTC		
N434A-R	GAAGAGCCAGTTTGTGGCCG		
Gal2-F	ATGGCAGTTGAGGAGAACAATATGC		
Gal2-R	TTATTCTAGCATGGCCTTGTACCAC		
Xltr1-F	ATGCGTTTCTCCGAGAAGCTC		
Xltr1-R	TTACACTTGAAGTTCAACTCCTTGGTC		
Gatr1-F	ATGGGATTCTTGAACAAAAAGCCG		
Gatr1-R	TTATTTCTCATCCTCGTGAGCGTGC		
Gltr1-F	ATGGCAGACGCTGATCTCAAAC		
Gltr1-R	TCATGCAGCCCCGTAGAC		
yeGFP-F	ATGTCTAAAGGTGAAGAATTATTCACTG		
yeGFP-R	TTATTTGTACAATTCATCCATACCATGG		

Note:

1. "F" represents forward primer, and "R" represents reverse primer.

2. F300X-R/N326X-R represents the reverse primer for following mutated amino acid residues:

F300A, F300W, F300Y; N326A, N326F, N326W, and N326Y.