Supporting Information

Insights into the Pyridine-modified MOR Zeolite Catalysts for DME Carbonylation

Kaipeng Cao^{a, b, Δ}, Dong Fan^{a, Δ}, Lingyun Li^a, Benhan Fan^{a, b}, Linying Wang^a, Dali Zhu^{a, b}, Quanyi Wang^a, Peng Tian^{*, a} and Zhongmin Liu^{*, a}

^a National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

*Corresponding authors: <u>tianpeng@dicp.ac.cn</u>; <u>liuzm@dicp.ac.cn</u>

Samples	SiO ₂	Al_2O_3	Na ₂ O	(TEA) ₂ O	H ₂ O
MOR(7.0)	30	2.0	3.9	3.0	480
MOR(9.7)	30	1.5	3.0	3.0	480
MOR(13.8)	30	1.0	2.4	3.0	480
MOR(16.5)	30	0.8	2.4	3.0	480
MOR(19.4)	30	0.65	2.4	3.0	480

Table S1 Molar compositions of the initial gels for the synthesis of MOR zeolites

 Table S2 Summary of the product STY in the MOR-catalyzed DME carbonylation reaction.

Literature		Reactio	STY of MA	Pyridine		
	DME : CO (%)	T (°C)	P (MPa)	GHSV (mL/g/h)	(mmol/h/g)	modification
[1]	2:93	165	1	12024	1.9	
[2]	5:50	200	1	1250	0.8	Yes
[3]	5:50	200	1	1250	1.7	
[4]	3:95.5	210	1.5	5280	4.0	
[5]	5:35	200	2	1500	1.3	
[6]	1:47	200	1.5	4500	1.8	
[7]	5:35	200	3	1500	2.8	
[8]	2.4:50	210	2	2100	3.2	
[9]	1:49	200	1.5	6000	1.6	
[10]	5:50	200	1	1250	1.3	
[11]	5:35	200	2	1500	3.0	Yes
[12]	1:47	200	1.5	3000	1.1	Yes
[13]	5:76	200	1	2500	2.5	
[14]	1:49	200	1.5	6000	1.6	
[15]	2:98	190	2	2000	1.8	
[16]	3:95.5	190	1.5	2640	2.8	
Our work	5:35	200	2	3600	7.2	Yes

Figure S1 FTIR spectra in the v(OH) vibration region (A) and pyridine ring-related vibration regions (B) of H-MOR(13.8) pretreated with different heating rates (heating rate 1 °C/min (a); heating rate 5 °C/min (b)). Pyridine desorption temperature: 200 °C.

Figure S2 XRD patterns of the as-synthesized MOR zeolites with different Si/Al ratios.

Figure S3 SEM images of the as-synthesized MOR samples with different Si/Al ratios.

Figure S4 N₂ adsorption-desorption isotherms of the H-MOR samples.

Figure S5 NH₃-TPD profiles (solid line) and deconvoluted results (dotted line) of the H-MOR samples. The arrows indicate the variation of the maximum desorption temperature.

Figure S6 ¹H MAS NMR spectra of the H-MOR samples (left) and the relative percentage of Si-O(H)-Al (3.9 ppm), Al-OH (2.6 ppm) and Si-OH (1.7 ppm) calculated based on the deconvoluted spectra (right).

Figure S7 Deconvoluted bands corresponding to the acid hydroxyls in the 12-MR channels (HF) and 8-MR pockets (LF) of H-MOR samples. The percentage shown in each figure is the ratio of H⁺ in 8-MR pockets. Note that the possible difference in absorption coefficient of the acid hydroxyls located in 12-MR channels and 8-MR pockets is not considered in the calculation^{1, 17-18}.

Figure S8 The derivation of the acidic hydroxyl band for deconvolution by subtracting the NH₃-titrated spectrum from the original one.

Figure S9 FTIR spectra of pyridine ring-related vibration regions on the H-MOR samples after pyridine desorption at 100, 200, 300 and 400 °C.

Figure S10 The v(OH) bands of the low-Si sample H-MOR(7.0) and H-MOR(9.7) after pyridine desorption at different temperatures (pyridine adsorption temperature: 100 °C).

Figure S11 DME conversion and MA selectivity over pyridine-modified H-MOR(13.8) catalysts after pyridine desorption at 500°C. Reaction conditions: 200°C, 2 MPa, DME/CO/N₂ = 5/35/60, GHSV=3600 mL/g/h.

Figure S12 DME conversion and MA selectivity over pyridine-exchanged MOR(13.8) after pyridine desorption at different temperatures. Pretreatment condition: 0.5 g of the catalyst (40-60 mesh) was loaded into the reactor and pretreated (heating rate 1 °C/min) in Ar at 200 °C for 4 h; Reaction conditions: 200 °C, 2 MPa, DME/CO/N₂ = 5/35/60, GHSV = 3600 mL/g/h.

Pyridine exchange condition: Mixed solution of pyridine and HCl (pyridine: 1 mol/L; pH \approx 7), solid/liquid = 1 g/20 mL (12 h@60 °C, repeated 3 times). The Na/Al ratio of the sample decreased from 0.76 to 0.13 after ion exchange.

References

(1) Bhan, A.; Allian, A. D.; Sunley, G. J.; Law, D. J.; Iglesia, E., Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. *J. Am. Chem. Soc.* **2007**, 129, 4919-4924.

(2) Liu, J.; Xue, H.; Huang, X.; Wu, P.-H.; Huang, S.-J.; Liu, S.-B.; Shen, W., Stability Enhancement of H-Mordenite in Dimethyl Ether Carbonylation to Methyl Acetate by Pre-adsorption of Pyridine. *Chin. J. Catal.* **2010**, 31, 729-738.

(3) Xue, H.; Huang, X.; Zhan, E.; Ma, M.; Shen, W., Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation. *Catal. Commun.* **2013**, 37, 75-79.

(4) Liu, Y.; Zhao, N.; Xian, H.; Cheng, Q.; Tan, Y.; Tsubaki, N.; Li, X., Facilely Synthesized H-Mordenite Nanosheet Assembly for Carbonylation of Dimethyl Ether. *ACS Appl. Mater. Interfaces* **2015**, *7*, 8398-8403.

(5) Yuan, Y.; Wang, L.; Liu, H.; Tian, P.; Yang, M.; Xu, S.; Liu, Z., Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance. *Chin. J. Catal.* **2015**, 36, 1910-1919.

(6) Zhan, H.; Huang, S.; Li, Y.; Lv, J.; Wang, S.; Ma, X., Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. *Catal. Sci. Technol.* **2015**, *5*, 4378-4389.

(7) Zhou, H.; Zhu, W.; Shi, L.; Liu, H.; Liu, S.; Xu, S.; Ni, Y.; Liu, Y.; Li, L.; Liu, Z., Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. *Catal. Sci. Technol.* **2015**, 5, 1961-1968.

(8) Reule, A. A. C.; Semagina, N., Zinc Hinders Deactivation of Copper-Mordenite: Dimethyl Ether Carbonylation. *ACS Catal.* **2016**, 6, 4972-4975.

(9) Wang, M. X.; Huang, S. Y.; Lu, J.; Cheng, Z. Z.; Li, Y.; Wang, S. P.; Ma, X. B., Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. *Chin. J. Catal.* **2016**, 37, 1530-1538.

(10) Ma, M.; Huang, X.; Zhan, E.; Zhou, Y.; Xue, H.; Shen, W., Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity. *J. Mater. Chem. A* **2017**, *5*, 8887-8891.

(11) Li, L. Y.; Wang, Q. Y.; Liu, H. C.; Sun, T. T.; Fan, D.; Yang, M.; Tian, P.; Liu, Z. M., Preparation of Spherical Mordenite Zeolite Assemblies with Excellent Catalytic Performance for Dimethyl Ether Carbonylation. *ACS Appl. Mater. Interfaces* **2018**, 10, 32239-32246.

(12) Li, Y.; Sun, Q.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Lv, J.; Ma, X. B., Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity. *Catal. Today* **2018**, 311, 81-88.

(13) Ma, M.; Zhan, E.; Huang, X.; Ta, N.; Xiong, Z.; Bai, L.; Shen, W., Carbonylation of dimethyl ether over Co-HMOR. *Catal. Sci. Technol.* **2018**, *8*, 2124-2130.

(14) Li, Y.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Li, L. D.; Milan, E.; Lv, J.; Wang, Y.; Sun, Q.; Ma, X. B., Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Bronsted acids. *Appl. Catal.*, *B* 2019, 256, 12.

(15) Wang, X. S.; Li, R. J.; Yu, C. C.; Liu, Y. X.; Liu, L. M.; Xu, C. M.; Zhou, H. J.; Lu, C. X., Influence of Acid Site Distribution on Dimethyl Ether Carbonylation over Mordenite. *Ind. Eng. Chem. Res.* **2019**, 58, 18065-18072.

(16) Zhao, N.; Cheng, Q.; Lyu, S.; Guo, L.; Tian, Y.; Ding, T.; Xu, J.; Ma, X.; Li, X., Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite. *Catal. Today* **2020**, 339, 86-92.

(17) Makarova, M. A.; Wilson, A. E.; vanLiemt, B. J.; Mesters, C.; deWinter, A. W.; Williams, C., Quantification of Bronsted acidity in mordenites. *J. Catal.* **1997**, 172, 170-177.

(18) Lukyanov, D. B.; Vazhnova, T.; Cherkasov, N.; Casci, J. L.; Birtill, J. J., Insights into Bronsted Acid Sites in the Zeolite Mordenite. *J. Phys. Chem. C* **2014**, 118, 23918-23929.