Supplementary Data

Pharmacokinetic/pharmacodynamic modeling to predict antiplatelet effect of ticagrelor-loaded self-microemulsifying drug delivery system in rats

Young-Guk Na,^{†,‡} Jin-Ju Byeon,^{†,‡} Min-Ki Kim,[†] Min-Gu Han,[†] Cheong-Weon Cho,^{,†}Jong-Suep Baek ^{*,§} Hong-Ki Lee, ^{*,†} Young G Shin,^{*,†}

[†]College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

[§]Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 25949, Republic of Korea

‡These authors contributed equally.

*Correspondence: Jong-Suep Baek, College of Pharmacy, Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 25949, Republic of Korea
E-mail: jsbaek@kangwon.ac.kr. Tel: +82-33-540-3320. Fax: +82-33-540-3329
*Co-correspondence: Hong-Ki Lee, College of Pharmacy, Chungnam National University, 99
Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
E-mail: hk_lee@cnu.ac.kr. Tel: +82-42-821-7301. Fax: +82-42-823-6566
*Co-correspondence: Young G Shin, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

1. Supplementary methods

1.1. LC-MS/MS analysis of TCG

The concentrations of TCG were determined using a liquid chromatography tandem-mass spectrometry (LC-MS/MS) system consisting of Agilent 1290 series and Agilent 6495 Triple Quad LC/MS (Agilent Technologies, Santa Clara, CA, USA). A YMC-Triart C18 column (50 × 2.0 mm, 1.9 µm; YMC Inc., Wilmington, NC, USA) was used as a chromatographic column. The mobile phase consisted of solvent A (0.1% formic acid in distilled water) and solvent B (0.1% formic acid in acetonitrile), with a gradient elution (0-0.5 min, 10% solvent B: 0.5-1.0 min, 10% to 95% solvent B; 1.0-1.5 min, 95% solvent B; 1.5-1.6 min, 95 to 10% solvent B; 1.6-3.0 min, 10% solvent B). The flow rate was 0.4 mL/min and the injection volume was 10 µL. The temperature of the column and autosampler were set as 30 °C and 4 °C, respectively. The positive ion mode using Agilent jet stream electrospray ionization (AJS-ESI) was applied to record the scan mass spectra. The ion transitions of TCG and verapamil (ISTD) were set as 523.1→153.0 m/z and 455.3→165.1 m/z, respectively, and detected with a multiple reaction monitoring (MRM) mode. The collision energies for TCG and ISTD were 40 V and 30 V, respectively. The cell accelerator voltage was 5 V and the dwell time was set as 200 ms. The source parameters were set as follows: Gas temperature 200°C, gas flow 14 L/min, nebulizer 20 psi, sheath gas heater 250°C, sheath gas flow 11 L/min, capillary 3000 V, and nozzle voltage 1500 V.

In this analysis, the most abundant ion transition of TCG ($523.1 \rightarrow 153.0 \text{ m/z}$) was selected to determine the lowest limit of quantification (LLOQ), and the LLOQ of TCG was 3 ng/mL. The range of calibration curve of TCG was set to 3–6600 ng/mL. The curve was written with a weighted linear regression ($1/x^2$) and showed excellent linearity with R² > 0.999. The method has shown accurate and reproducible results within acceptable tolerances (less than 20% coefficient of variation (CV) at LLOQ and less than 15% CV at all other concentrations). The acquired LC-MS/MS data were processed with Agilent analysis software (Agilent MassHunter Quantitative Software Version B.07.00).

2. Supplementary results

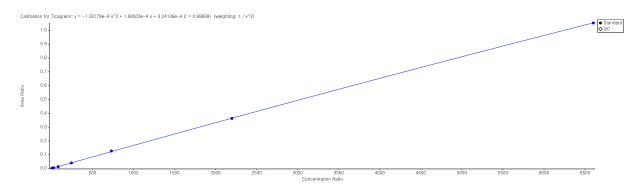
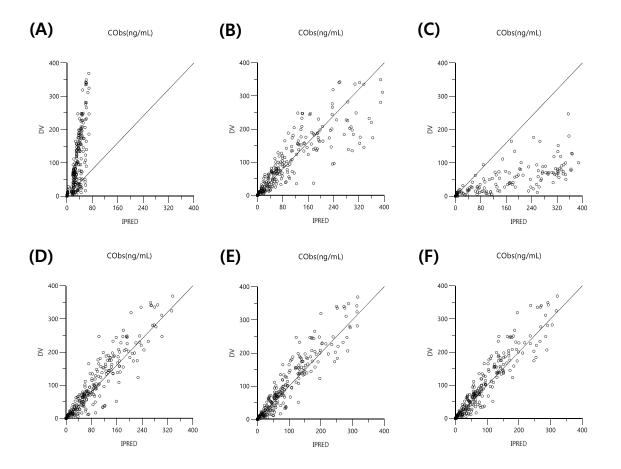



Figure S1. Calibration curve of ticagrelor (concentration range 3–6600 ng/mL).

Actual concentration (ng/mL)	Area	Calculated concentration (ng/mL)	Accuracy (%)
3.02	39.65	3.09	102.19
9.05	87.55	8.35	9223
27.16	265.3	27.76	102.19
81.48	805.3	85.72	105.20
244.44	2114	34.90	96.10
733.33	6044	752.45	102.61
2200	18140	2189.89	99.54
6600	55180	6595.73	99.94

Table S1. Ticagrelor concentration in standard samples measured by LC-MS/MS analysis.

Figure S2. Goodness-of-fit plots of (A) one-compartment model with saturated absorption, (B) one-compartment model with multi-absorption compartments, (C) one-compartment model with saturated elimination, (D) one-compartment model with linear-decreased F value, (E) two-compartment model, and (F) one-compartment model. The dotted marks indicate the observed data. The solid line represents the line of unity.

Table S2. Objective function values	(OFV) from different PK models.
-------------------------------------	------	-----------------------------

PK models	OFV (-2LL)
One-compartment model with saturated absorption	2512.32
One-compartment model with multi-absorption compartments	2417.01
One-compartment model with saturated elimination	2900.25
One-compartment model with linear-decreased F value	2402.75
Two-compartment model	2277.95
One-compartment model	2395.59

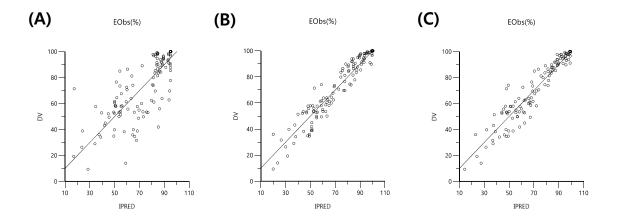


Figure S3. Goodness-of-fit plots of (A) direct response E_{max} model, (B) effect compartment model, and (C) indirect response E_{max} model. The dotted marks indicate the observed data. The solid line represents the line of unity.

PK/PD models	OFV (-2LL)
Direct response E _{max} model	1327.67
Effect compartment model	1174.58
Indirect response E _{max} model	1182.10

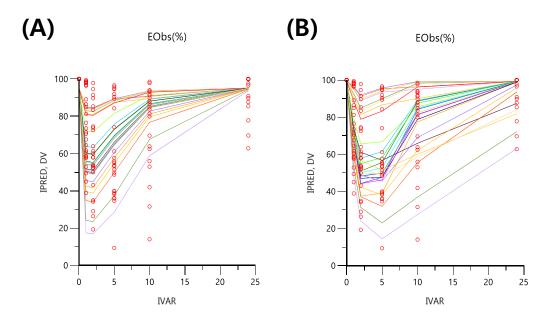


Figure S4. Observed data and model-simulated data by (A) effect compartment model and (B) indirect response E_{max} model. The dotted marks and solid lines represent the observed data and the simulated profiles, respectively.

Results: The effect compartment model showed lowest OFV, but the model could not reflect the I_{max} and the observed effect at 10 h. So, we selected the two-compartment model as a final population PK model.