Supporting Information

Targeted Covalent Inhibition of Telomerase

Rick C. Betori ${ }^{1}$, Yue Liu ${ }^{4}$, Rama K. Mishra ${ }^{3}$, Scott B. Cohen ${ }^{5}$, Stephen J. Kron ${ }^{4}$ and Karl A. Scheidt ${ }^{1,2,3 *}$
${ }^{1}$ Department of Chemistry, Northwestern University, Evanston IL, ${ }^{2}$ Department of Pharmacology, Northwestern University, Chicago IL, ${ }^{3}$ Center for Molecular Innovation and Drug Discovery, Northwestern University, ${ }^{4}$ Ludwig Center for Metastasis Research, The University of Chicago, Chicago IL, and ${ }^{5}$ Children's Medical Research Institute, Westmead, NSW, Australia; University of Sydney, Sydney, NSW, Australia
*To whom correspondence should be addressed

Table of Contents

General Information for Chemistry 3
General Procedure for Synthesis of Racemic Analogues 4
Characterization of Racemic Telomerase Inhibitors. 7
Correlation Analysis Between Binding Energy and IC_{50} Values for $1^{\text {st }}$ Gen Library 17
$2^{\text {nd }}$ Generation Library Subset 18
Synthesis of NU-1 19
Supplemental Figures 24
Full List of $2^{\text {nd }}$ Generation Compounds Computationally Modeled. 29
NMR Spectra for Telomerase Inhibitors 50
References 68

General Information for Chemistry

All reactions were carried out under an argon or nitrogen atmosphere in flame-dried glassware with magnetic stirring. Solvents used in reactions were purified by passage through a bed of activated alumina. Unless stated otherwise, reagents were purified prior to use following the guidelines of Perrin and Armarego. ${ }^{1}$ Purification of reaction products was carried out by flash chromatography on Biotage Isolera 4 systems with Ultra-grade silica cartridges. Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light. Infrared spectra were recorded on a Bruker Tensor 37 FT-IR spectrometer. ${ }^{1}$ H NMR spectra were recorded on an AVANCE III 500 MHz spectrometer with direct cryoprobe (500 MHz) and Bruker Avance III $600 \mathrm{MHz}(151 \mathrm{MHz})$ system. Spectra are reported in ppm using solvent as an internal standard $\left(\mathrm{CHCl}_{3}\right.$ at 7.26 ppm$)$. Peak multiplicities are reported as $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint= quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad; coupling constant(s) in Hz ; integration.) Proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an AVANCE III 500 MHz with direct cryoprobe (125 MHz) spectrometer or Bruker Avance III $600 \mathrm{MHz}(151 \mathrm{MHz}$) system. These are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm). Low-resolution mass spectra were obtained on WATERS Acquity-H UPLC-MS with a single quad detector (ESI) Varian 1200 Quadrupole Mass Spectrometer. High-resolution mass spectra were obtained using an Agilent 6120A LC-time of flight mass spectrometer. Gas chromatography experiments were run on Agilent 7890A/5975C GC/MS System.

General Procedure for Synthesis of Racemic Analogues

tert-butyl((2,2-dimethyl-4-methylene-4H-1,3-dioxin-6-yl)oxy)dimethylsilane (1.0 equiv) and the desired aldehyde (1.2 equiv) were added to a 20 mL oven dried scintillation vial equipped with a magnetic stir bar. $4 \AA$ MS ($200 \mathrm{wt} \%$ relative to tert-butyl((2,2-dimethyl-4-methylene$4 H$-1,3-dioxin-6-yl)oxy)dimethylsilane) was added, and the vial was sealed and placed under inert atmosphere, followed by addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$. The reaction vial was cooled to $78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ (1.2 equiv) was added dropwise over a period of 15 minutes. The reaction was monitored by UPLC-MS until complete consumption of tert-butyl((2,2-dimethyl-4-methylene-4H-1,3-dioxin-6-yl)oxy)dimethylsilane was observed (typically 2-4 hours). When consumption was complete, the reaction was warmed to $0{ }^{\circ} \mathrm{C}$. Subsequently, the second aldehyde (1.2 equiv) was added by syringe, followed by $\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ (2.0 equiv). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$, and the reaction progress was monitored by UPLC-MS until complete consumption of the β-hydroxydioxinone was observed. Upon complete consumption, 0.1 M potassium phosphate buffer (pH 7.0) was added by syringe and the reaction was warmed to room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the suspension was then filtered through a Biotage Isolute phase separator and then concentrated. Typically, reactions were of sufficient purity for the subsequent reaction.

To a microwave vial equipped with a stir bar was added bicyclic dioxinone pyran (1.0 equiv), which was dissolved in toluene (0.2 M). The corresponding alcohol (10 equiv) was added, the microwave vial was capped, and the reaction was heated in a Biotage microwave reactor at $150{ }^{\circ} \mathrm{C}$ for 90 min . After the vial was cooled to room temperature, the solution was concentrated, and the crude product was of sufficient purity for the subsequent reaction.

In a microwave vial equipped with a magnetic stir bar was added β-keto ester (1.0 equiv), which was dissolved in acetonitrile (0.2 M). To the solution was added potassium carbonate (4 equiv) and alkyl halide (10 equiv). The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$, and conversion of the starting material was monitored by UPLC-MS (typically 2-4 hours) before cooling to room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a Biotage Isolute phase separator and concentrated to afford the crude product, which was of sufficient purity for the subsequent reaction. When benzyl bromide was used, the concentrated vial was dried under high vacuum at $40^{\circ} \mathrm{C}$ overnight to remove residual benzyl bromide.

To a microwave vial equipped with a magnetic stir bar was added the alkylated β-keto ester (1.0 equiv), which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$. To the solution was added $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (6 equiv) and $\mathrm{Et}_{2} \mathrm{NH}$ (12 equiv). The container was sealed and the reaction heated in a Biotage microwave reactor at $100{ }^{\circ} \mathrm{C}$ for 1 hour. After the vial was cooled to room temperature, the reaction solution was concentrated. Diethyl ether was added to the crude reaction mixture to precipitate out the ammonium salts. The mixture was filtered, and the filtrate was concentrated. The crude product was purified by flash chromatography to yield the desired product.

Characterization of Racemic Telomerase Inhibitors

(\pm) methyl ($2 S, 3 R, 6 R$)-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.09-$ $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dt}, J=14.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,171.2,168.2$, $142.5,137.9,129.0,124.4,122.7,119.9,117.4,77.9,74.7,60.9,52.4,32.2,29.7,24.8,20.2$, 14.6. LCMS (ESI): Mass calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 360.1733$, Found 360.1745

(\pm) methyl ($2 S, 3 R, 6 R$)-3,6-dimethyl-5-methylene-4-oxo-2-phenethyltetrahydro-2H-pyran-3carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.30-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.54(\mathrm{~m}, 2 \mathrm{H})$, $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=2.1 \mathrm{~Hz} 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,171.1$, 144.3, S-7
$141.4,128.5,128.4,128.4,126.0,122.6,77.9,74.7,60.9,52.3,32.2,32.2,20.2,14.5$. LCMS (ESI): Mass calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 303.1518$, Found 303.1522

(\pm) methyl $(2 S, 3 R, 6 R)$-2-isobutyl-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform- d) $\delta 6.15(\mathrm{~d}, J=2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.2,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=$ 6.3 Hz, 3H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 0.98-0.82(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.7, 171.3, 144.4, 122.5, 77.2, 74.6, 61.1, 52.3, 39.6, 25.0, 23.4, 21.7, 20.3, 14.4. LCMS (ESI): Mass calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 255.1518$, Found 255.1522

(\pm) methyl (2S,3R,6R)-2-(4-fluorophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.34-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 2.87(\mathrm{dq}, J=13.0,7.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32$ S-8
$(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.1,162.9(\mathrm{~d}, \mathrm{~J}=248 \mathrm{~Hz}), 144.1,130.0(\mathrm{~d}, \mathrm{~J}=3.2$ $\mathrm{Hz}), 124.8,124.6(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}) 122.8,115.2(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 77.7,74.7,67.1,52.4,32.0$, 31.9, 20.2, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 321.1424$, Found 321.1430

(\pm
methyl
($2 S, 3 R, 6 R$)-3,6-dimethyl-5-methylene-4-oxo-2-(4-
(trifluoromethyl)phenethyl)tetrahydro-2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.51$ (dd, $J=13.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.20(\mathrm{~m}, 2 \mathrm{H})$, $6.15(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.39(\mathrm{~m}, 1 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,171.1,145.5,144.0,128.8(\mathrm{q}, \mathrm{J}=32.6 \mathrm{~Hz}), 127.7$, $125.4(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}), 123.2(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}), 100.3,77.8,74.8,60.8,52.5,32.1,29.4,20.2$, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 371.1392$, Found 371.1401

(\pm) methyl ($2 S, 3 R, 6 R$)-2-(4-methoxyphenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 197.4,171.2,157.8,144.3,133.7,129.3,129.3,122.6,113.8$, 77.9, 74.7, 55.3, 52.7, 34.3, 30.0, 20.2, 14.6. LCMS (ESI): Mass calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 333.1624$, Found 333.1609

(\pm) methyl ($2 S, 3 R, 6 R$)-2-(3-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.39$ (d, $J=2.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19-7.15$ (m, 1H), 7.11 (d, J $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.38(\mathrm{~m} 1 \mathrm{H}), 4.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.31 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,171.1,168.2,144.2,137.4$, 135.9, 135.2, 129.7, 128.9, 122.7, 120.0, 77.8, 74.7, 60.9, 52.4, 32.1, 31.5, 24.6, 20.3, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 360.1733$, Found 360.1745

(\pm) methyl ($2 S, 3 R, 6 R$)-2-(3-fluorophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.17-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 2.81-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,171.1,160.4,144.2,137.0,129.7(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 122.7$, 115.2 ($\mathrm{d}, \mathrm{J}=21.5 \mathrm{~Hz}$), 103.6, 100.5, 77.8, 74.7, 60.9, 52.8, 35.8, 32.3, 20.2, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 321.1424$, Found 321.1432

(\pm) methyl $(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-6-isobutyl-3-methyl-5-methylene-4-oxotetrahydro- $2 H$-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.24(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.14$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.49$ (s, 3H), 2.26-2.06(m, 2H), $1.97(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}$, $3 \mathrm{H}), 1.07-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.69(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.6, 171.4, 168.3, 144.2, 137.3, 136.0, 128.9, 120.0, 79.3, 75.3, 62.4, 52.2, 45.4, 32.3, 31.7, 24.5, 24.4, 23.3, 22.0, 14.3. LCMS (ESI): Mass calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 402.2202$, Found 402.2210

$(\pm) \quad$ methyl $(2 S, 3 R, 6 R)-2-(4-a c e t a m i d o p h e n e t h y l)-3-m e t h y l-5-m e t h y l e n e-4-o x o-6-$ phenethyltetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19$ $(\mathrm{m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.73-$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.3,171.3,168.9,162.6,141.2,136.7,128.7$, $128.5,128.4,126.0,120.0,79.2,75.9,62.3,52.1,46.8,43.6,37.8,36.5,31.4,24.2,14.2,8.7$. LCMS (ESI): Mass calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 449.2202$, Found 449.2198

$(\pm) \quad$ isopropyl $\quad(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform-d) $\delta 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.04-$ $3.98(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6,170.1,168.1,144.4$, S-12
$137.4,135.9,129.0,122.4,120.0,77.6,77.2,74.7,68.8,60.7,31.5,29.7,24.7,21.4,20.2$, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 388.2046$, Found 388.2044

(\pm) cyclopropylmethyl $(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro- 2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.42$ - $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.79$ (m, 2H), $2.94-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$ $(\mathrm{s}, 3 \mathrm{H}), 1.06-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.43(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.5,170.8,168.2,144.3,137.4,129.0,126.6,122.6,120.0,77.9,74.7,69.9,60.9$, 32.1, 31.6, 24.7, 20.2, 14.6, 9.7, 3.3, 3.2. LCMS (ESI): Mass calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 400.2046$, Found 400.2040

(\pm) benzyl ($2 S, 3 R, 6 R$)-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro2 H -pyran-3-carboxylate
${ }^{1}$ H NMR (500 MHz , Chloroform- d) $\delta 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01$ $(\mathrm{m}, 1 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.03$ $(\mathrm{m}, 2 \mathrm{H}), 4.42-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.89-$ $1.66(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.2, $170.5,168.1,144.3,137.3,135.8,135.6,128.9,128.5,128.3,128.2,122.6,119.9,77.9,74.7$, 66.9, 60.9, 32.1, 31.6, 24.6, 20.2, 14.6. LCMS (ESI): Mass calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 436.2046$, Found 436.2061

(\pm) butyl ($2 S, 3 R, 6 R$)-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.43-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.18-6.11$ $(\mathrm{m}, 1 \mathrm{H}), 5.40-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.79-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=32.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-$ $0.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.5, 170.7, 168.1, 144.4, 137.4, 135.9, 129.0, $122.4,119.9,77.9,74.7,65.2,60.9,32.2,31.6,30.4,24.6,20.3,19.0,14.5,13.7$. LCMS (ESI): Mass calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 402.2202$, Found 402.2185

(\pm) 2-methoxyethyl $\quad(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.17-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.14$ (d, J $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,170.6,168.1,144.2,137.5,135.8,129.0,122.6,120.0,78.0,77.2,74.7,70.2,64.0$, $60.9,58.9,32.1,31.7,24.7,20.2,14.5$. LCMS (ESI): Mass calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}: 404.1995$, Found 404.2001

$(\pm) \quad$ methyl $\quad(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-3-ethyl-6-methyl-5-methylene-4-oxotetrahydro- 2 H -pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.15-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{dt}, J=14.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H})$, $1.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,171.5$, S-15
$168.5,142.9,138.4,129.5,124.7,123.1,120.3,117.7,78.3,75.0,61.3,52.7,32.6,30.1,25.1$, 20.6, 14.9, 14.8. LCMS (ESI): Mass calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 374.1967$, Found 374.1962

$(\pm) \quad$ methyl $\quad(2 S, 3 R, 6 R)$-2-(4-acetamidophenethyl)-3-isopropyl-6-methyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.09-$ $43.99(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{dt}, J=14.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,171.3$, 168.3, 142.7, 138.1, 129.1, 124.5, 122.9, 120.1, 117.6, 78.1, 74.9, 61.1, 52.6, 32.3, 29.9, 24.9, 20.4, 14.8, 14.7. LCMS (ESI): Mass calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 388.2123$, Found 388.2110

Correlation Analysis Between Binding Energy and $\mathbf{I C}_{50}$ Values for $\mathbf{1}^{\text {st }}$ Gen Library

	Binding Energy (kcal/mol)
R square	0.8069

The binding energies and IC_{50} of all compounds in Table 1 and Table 2 that demonstrated the ability to inhibit telomerase activity by TRAP assay $<100 \mu \mathrm{M}$ were analyzed to see if a correlation existed between binding energies and IC_{50}. Linear regression analysis demonstrated that a positive correlation was observed, with an $\mathrm{R}^{2}=0.8069$

$2^{\text {nd }}$ Generation Library Subset

$I_{50}=7.5 \mu \mathrm{M}$

$\mathrm{IC}_{50}=1.1 \mu \mathrm{M}$

$I C_{50}=20 \mu \mathrm{M}$

$\mathrm{IC}_{50}=900 \mathrm{nM}$

$\mathrm{IC}_{50}=650 \mathrm{nM}$

$\mathrm{IC}_{50}=500 \mathrm{nM}$

$\mathrm{IC}_{50}=2.2 \mu \mathrm{M}$

$\mathrm{IC}_{50}=300 \mathrm{nM}$

$\mathrm{IC}_{50}=475 \mathrm{nM}$

Synthesis of NU-1

2,2-Dimethyl-6-(2-oxo-2-methylethyl)-4H-1,3-dioxin-4-one (S1)

Prepared according to literature precedent. ${ }^{2}$ Dioxinone (1.0 equiv) in THF (2.0 M) was added dropwise to LiHMDS in THF (1.4 equiv, 1.0 M) and THF (1.0 M) at $-20^{\circ} \mathrm{C}$, and after 45 min , diethylzinc in hexanes (1.4 equiv, 1.0 M) was added over 2 h . After a further 30 min , the reaction mixture was allowed to warm up to $-10{ }^{\circ} \mathrm{C}$ and N -acetylimidazole (1.4 equiv) was added portionwise over 15 min . After $3.5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}:$ THF (1:9; 75 mL) was added dropwise, followed by $6.0 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and $\mathrm{EtOAc}(250 \mathrm{~mL})$. The pH was adjusted to $\mathrm{pH} 1-2$ using $1.0 \mathrm{M} \mathrm{HCl}(265 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with EtOAc (250 mL), and the combined organic extracts were washed with brine $(250 \mathrm{~mL})$, dried
$\left(\mathrm{MgSO}_{4}\right)$, rotary evaporated, and chromatographed (hexanes:EtOAc 3:2) to give S 1 as pale yellow crystals.

Analytical Data: ${ }^{1} \mathrm{H}$ NMR spectroscopy ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.25$, (s, 3H), $1.72(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR spectroscopy $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.9,164.4,160.7,107.2$, $96.6,47.9,30.2,25.0$. All physical data for this product correspond with literature values. ${ }^{3}$

(R)-6-(2-hydroxypropyl)-2,2-dimethyl-4H-1,3-dioxin-4-one (S2)

Prepared according to literature precedent. ${ }^{4} 160 \mathrm{~mL}$ of 0.1 M phosphate buffer (pH 7.0) was added to a 500 mL 3 neck round bottom flask equipped with an overhead stirrer, a nitrogen inlet, and a septum. 100 mg of KRED-P01-C01 was then added followed by 50 mg of NADPH. In a separate 100 mL round bottom flask, 20.0 g of $\mathrm{S} 1,20 \mathrm{~mL}$ isopropanol (IPA), and 20 mL cyclopentylmethyl ether (CPME) were added. Upon the β-ketodioxinone substrate completely dissolving (required slight heating and stirring), this solution was added to the solution containing KRED-P01-C01. The reaction was stirred for 72 hours at $30{ }^{\circ} \mathrm{C}$. Upon reaction completion, solid NaCl was added to the reaction mixture. The solution was then filtered, extracted with ethyl acetate (5 x 150 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo to obtain $>99 \%$ pure β-hydroxydioxinone S2

Analytical Data: ${ }^{1} \mathrm{H}$ NMR spectroscopy $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 1 \mathrm{H})$, $2.38(1 \mathrm{H}, \mathrm{d}, J=2.8), 2.37(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}), 1.27(3 \mathrm{H}, \mathrm{d}, J=6.2) .{ }^{13} \mathrm{C}$ NMR spectroscopy ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,161.3,106.6,94.9,65.1,43.2,25.2,24.9,23.5$.

All physical data for this product corresponds with literature values. ${ }^{3}$

(5S,7R)-5-(but-3-yn-1-yl)-2,2,7-trimethyl-7,8-dihydro-4H,5H-pyrano[4,3-d][1,3]dioxin-4one (S3)

A flask was charged with $4 \AA$ MS ($2: 1$ by wt), pent-4-ynal (4.0 equiv) and S2 (1.0 equiv). Dichloromethane $(0.25 \mathrm{M})$ was added and the reaction was cooled to $-78^{\circ} \mathrm{C}$. Then, TMSOTf (2.0 equiv) was added dropwise and stirred for 5 h . The reaction was quenched at $-78^{\circ} \mathrm{C}$ with a $1: 1$ mixture of $\mathrm{NEt}_{3} / \mathrm{MeOH}$ and allowed to warm to room temperature. The suspension was then filtered through a Biotage Isolute phase separator and then concentrated. The crude product was of sufficient purity and immediately used in the next reaction.

methyl (2S,3R,6R)-2-(but-3-yn-1-yl)-6-methyl-4-oxotetrahydro-2H-pyran-3-carboxylate (S4) In a microwave vial S3 (1.0 equiv) was dissolved in toluene (0.2 M). Dry methanol (10 equiv) was added, the reaction vial was capped, and the reaction heated in a Biotage microwave reactor at $150^{\circ} \mathrm{C}$ for 40 m . After the vial was cooled to room temperature, the solution was concentrated. The crude product was of sufficient purity and was immediately used in the next reaction.

methyl (2S,3R,6R)-2-(but-3-yn-1-yl)-3,6-dimethyl-4-oxotetrahydro-2H-pyran-3-carboxylate (S5)

S4 (1.0 equiv) was dissolved in acetonitrile (0.2 M) in a vial with stir bar. To the solution was added potassium carbonate (4 equiv) and methyl iodide (10 equiv). The reaction mixture was heated to $70^{\circ} \mathrm{C}$ for 2 hours before cooling to room temperature and quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a Biotage Isolute phase separator, and concentrated. The crude product was of sufficient purity and immediately used in the next reaction.

methyl ($2 S, 3 R, 6 R$)-2-(but-3-yn-1-yl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3carboxylate (S6)

Prepared according to literature precedent. ${ }^{5}$ To a solution of S 5 (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.2 M) in a microwave vial, $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (6.0 equiv) and $\mathrm{Et}_{2} \mathrm{NH}$ (12.0 equiv) were added. The container was sealed, and the reaction heated in a Biotage microwave reactor at $100^{\circ} \mathrm{C}$ for 1 hour. After the vial was cooled to room temperature, the reaction solution was concentrated. Diethyl ether was added to the crude reaction mixture to precipitate out the ammonium salts.

The mixture was filtered, and the filtrate was concentrated. The crude product was of sufficient purity and immediately used in the next reaction.

methyl (2S,3R,6R)-2-(2-(1-(2,4-difluorobenzyl)-1H-1,2,3-triazol-4-yl)ethyl)-3,6-dimethyl-5-methylene-4-oxotetrahydro-2H-pyran-3-carboxylate (NU-1)

1-(Azidomethyl)-2,4-difluorobenzene (1.0 equiv) and S6 (1.0 equiv) were dissolved in t$\mathrm{BuOH}(0.2 \mathrm{M})$ room temperature. To this, a solution of copper (II) sulfate pentahydrate (0.12 equiv) and sodium (R)-2-((S)-1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate (0.25 equiv) in water $\left(0.2 \mathrm{M}\right.$) was added. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 5 h . After completion, the reaction mixture was extracted with EtOAc (3x). The organic layer was dried over sodium sulfate, and the excess solvent was removed under reduced pressure. The crude product was purified by column chromatography to yield NU-1.
${ }^{1} \mathrm{H}$ NMR (500 MHz, Chloroform-d) $\delta 7.36$ - 7.24 (m, 2H), 7.22 - $7.10(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.32$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.2, 171.1, 163.5, 160.4, 144.2, 137.0, 136.8, 129.8 $(\mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}), 125.8,115.2(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 103.6,100.5,77.8,77.3,77.0,76.8,74.7,60.9$, 52.8, 35.8, 32.3, 20.2, 14.5. LCMS (ESI): Mass calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$ 420.1657, Found 420.1650

Supplemental Figures

Fig S1: HPQDEIPYCGK Peptide of DMSO control treated tcTERT.

Fig S2: HPQDEIPYCGK Peptide of chrolactomycin (1) treated tcTERT.

Fig S3: HPQDEIPYCGK Peptide of NU-1 treated tcTERT.

NU-1

Experimental in vitro drug like properties

Human Plasma Stability $\left(\mathrm{t}_{1 / 2}\right): 41 \mathrm{~min}$ Mouse Liver Microsomes ($\mathrm{t}_{1 / 2}$): 31 min N -acetyl cysteine kinetics ($\mathrm{t}_{1 / 2}$): 42 min $\log \mathrm{D}: 2.8$
CYP1A2 inhibition: 13% (@ $10 \mu \mathrm{M}$)
PAMPA (pH 5.0, 6.2, 7.4, Log(Pe)): -3.6, 3.8, -3.7

Fig S4: Experimental in vitro drug like properties of NU-1

Fig S5: IC_{50} curve of chrolactomycin measured in MCF-7 cell lysates. $\mathrm{IC}_{50}=0.5 \mu \mathrm{M}$

okilactomycin
$\mathrm{IC}_{50}=2.1 \mu \mathrm{M}$

Fig S6: IC_{50} curve of okilactomycin measured in MCF-7 cell lysates. $\mathrm{IC}_{50}=2.1 \mu \mathrm{M}$

Fig S7: IC_{50} curve of racemic 4 a measured in MCF-7 cell lysates. $\mathrm{IC}_{50}=1.5 \mu \mathrm{M}$

$\mathrm{IC}_{50}=4.5 \mu \mathrm{M}$

Fig S8: IC_{50} curve of enantiopure 4a measured in MCF-7 cell lysates. $\mathrm{IC}_{50}=4.5 \mu \mathrm{M}$

$\mathrm{IC}_{50}=0.9 \mu \mathrm{M}$

Fig S9: IC_{50} curve of enantiopure 4 a measured in MCF-7 cell lysates. $\mathrm{IC}_{50}=0.9 \mu \mathrm{M}$

title: molecule_198

title: molecule_171

title: molecule_134

title: molecule_71

title: molecule_70

title: molecule_236

title: molecule_67

title: Set_2_24

title: molecule_97

title: molecule_170

title: molecule_198

title: molecule_228

title: molecule_68

title: molecule_218

title: molecule_44

title: molecule_52

title: molecule_96

title: molecule_56

title: Set_2_28

title: Set_2_25

title: molecule_79

title: molecule_169

title: Set_2_10

title: molecule_234

title: molecule_34

title: molecule_165

title: molecule_99

title: molecule_134

title: molecule_49

title: molecule_93

title: molecule_94

title: molecule_41

title: Set_2_8

title: molecule_47

title: molecule_79

title: molecule_20

title: molecule_55

title: molecule_111

title: molecule_163

title: molecule_107

title: molecule_78

title: molecule_69

title: Set_2_27

title: molecule_73

title: molecule_42

title: molecule_49

title: molecule_31

title: molecule_101

title: molecule_100

title: molecule_23

title: molecule_190

title: molecule_17

title: molecule_173

title: molecule_19

title: molecule_110

title: molecule_233

title: molecule_54

title: molecule_89

title: molecule_115

title: molecule_38

title: molecule_60

title: molecule_192

title: molecule_172

title: molecule_114

title: molecule_160

title: Set_2_18

title: molecule_175

title: molecule_13

title: molecule_116

title: molecule_53

title: Set_2_17

title: molecule_223

title: molecule_206

title: molecule_128

title: Set_2_23

title: molecule_206

title: molecule_27

titie: molecule_46

title: molecule_9

title: molecule_102

title: molecule_59

title: molecule_216

title: molecule_26

title: Set_2_26

title: molecule_169

title: molecule_58

title: molecule_88

title: molecule_108

title: molecule_18

title: molecule_177

title: molecule_35

title: Set_2_20

title: molecule_51

title: molecule_86

title: molecule_222

title: molecule_232

title: molecule_176

title: molecule_119

title: molecule_62

title: Set_2_1

title: molecule_168

title: molecule_217

title: molecule_113

title: molecule_25

title: molecule_202

title: molecule_174

title: molecule_40

title: molecule_33

title: molecule_131

title: molecule_129

title: molecule_21

title: molecule_149

title: molecule_61

title: molecule_164

title: molecule_211

title: molecule_219

title: molecule_235

title: molecule_118

title: molecule_98

title: molecule_220

title: molecule_166

title: molecule_180

title: molecule_155

title: molecule_63

title: molecule_230

title: molecule_2

title: molecule_103

title: molecule_57

title: molecule_161

title: molecule_195

title: molecule_74

title: molecule_29

title: molecule_202

title: molecule_205

title: molecule_211

title: molecule_225

title: molecule_85

title: molecule_214

title: molecule_120

title: molecule_11

title: molecule_178

title: molecule_197

title: molecule_213

title: molecule_90

title: molecule_182

title: molecule_117

title: molecule_205

title: molecule_146

title: molecule_124

title: molecule_143

title: molecule_80

title: molecule_48

title: molecule_185

title: molecule_65

title: molecule_212

title: molecule_32

title: molecule_1

title: molecule_109

title: molecule_127

title: molecule_167

title: molecule_91

title: molecule_104

title: molecule_194

title: molecule_214

title: molecule_64

title: molecule_28

title: molecule_5

title: molecule_37

title: molecule_8

title: molecule_214

title: molecule_125

title: Set_2_21

title: molecule_30

title: molecule_201

title: molecule_84

title: molecule_179

title: molecule_4

title: molecule_3

title: Set_2_15

title: molecule_22

title: molecule_24

title: Set_2_9

title: molecule_207

title: molecule_144

title: molecule_87

title: molecule_121

title: molecule_200

title: molecule_210

title: molecule_123

title: molecule_210

title: molecule_108

title: Set_2_16

title: molecule_199

title: molecule_180

title: molecule_196

title: molecule_82

title: molecule_12

title: molecule_231

title: molecule_224

title: molecule_7

title: molecule_133

title: Set_2_2

title: molecule_39

title: molecule_36

title: molecule_81

title: molecule_205

title: molecule_43

title: molecule_130

title: molecule_42

title: molecule_210

title: molecule_126

title: molecule_95

title: molecule_45

title: molecule_223

title: molecule_125

title: molecule_162

title: molecule_190

title: molecule_75

title: molecule_127

title: molecule_196
title: molecule 140

title: molecule_132

title: molecule_211

title: molecule_10

title: Set_2_22

title: molecule_187

title: molecule_193

title: molecule_129

title: molecule_122

title: molecule_186

title: molecule_50

title: molecule_208

title: molecule_66

title: molecule_121

title: molecule_166

title: molecule_16

title: molecule_202

title: molecule_92

title: molecule_135

title: molecule_186

title: molecule_145

title: molecule_124

title: molecule_15

title: molecule_199

title: molecule_132

title: molecule_201

title: molecule_72

title: molecule_33

title: Set_2_13

title: Set_2_14

title: molecule_167

title: molecule_181

title: molecule_154

title: molecule_122

title: molecule_203

title: Set_2_19

title: molecule_117

title: molecule_209

title: Set_2_12

title: Set_2_16

title: molecule_200

title: molecule_14

title: molecule_6

title: molecule_156

title: molecule_197

title: molecule_152

title: molecule_120

title: molecule_213

title: molecule_212

title: molecule_119

title: molecule_158

title: molecule_142

title: molecule_126

title: molecule_139

title: molecule_207

title: molecule_133

title: molecule_184

title: molecule_137

title: molecule_215

title: molecule_157

title: molecule_206

title: molecule_212

title: Set_2_4

title: molecule_150

title: molecule_203

title: molecule_138

title: molecule_205

title: Set_2_3

title: molecule_224

title: Set_2_9

title: molecule_153

title: molecule_204

title: molecule_207

title: molecule_205

title: molecule_209

title: molecule_201

title: Set_2_9

title: molecule_222

title: molecule_128

title: molecule_147

title: molecule_123

title: molecule_141

title: molecule_159

title: molecule_136

title: molecule_151

title: molecule_204

title: molecule_130

title: molecule_208

title: molecule_131

title: molecule_204

title: molecule_118

title: Set_2_6

title: Set_2_11

title: molecule_148

title: Set_2_7

title: Set_2_5

title: molecule_165

NMR Spectra for Telomerase Inhibitors

rb-phrc-11-95.10.fid
PROTON CDCI3/home/walkon/data/Scheidt rcb 3939

rb-phrc-11- ©
NU_C13_1审g/home/walkonjo

∞	8	앗	$\begin{aligned} & \text { O} \\ & \text { గ్ర } \end{aligned}$	8	$\begin{aligned} & 8 \\ & \hline 10 \end{aligned}$	O	$\begin{aligned} & 8 \\ & \stackrel{0}{7} \end{aligned}$	8	O	oㅇ	ి유N	O-N	8	응	8	O	8

[^0]

(
-11000

phrc-11-31.10.fid
PROTON CDCI3 /home/walkon/data/Scheidt/rcb393

Nawnw

phrc-11-32.10.fid
PROTON CDCI3/home/walkon/data/Scheidt/rcb393

References

(1) Perrin, D. D.; Armarego, W. L. F., Purification of Laboratory Chemicals. 3rd ed.; Pergamon Press: Oxford, 1988.
(2) Patel, B. H.; Mason, A. M.; Patel, H.; Coombes, R. C.; Ali, S.; Barrett, A. G. M. Conversion of α-Amino Acids into Bioactive o-Aminoalkyl Resorcylates and Related Dihydroxyisoindolinones. J. Org. Chem. 2011, 76, 6209-6217.
(3) Fang, Z.; Clarkson, G. J.; Wills, M. Asymmetric reduction of 2,2-dimethyl-6-(2-oxoalkyl/oxoaryl)-1,3-dioxin-4-ones and application to the synthesis of $(+)$-yashabushitriol. Tetrahedron Lett. 2013, 54, 6834-6837.
(4) Betori, R. C.; Miller, E. R.; Scheidt, K. A. A Biocatalytic Route to Highly Enantioenriched β Hydroxydioxinones. Adv. Synth. Catal. 2017, 359, 1131-1137.
(5) Hon, Y.-S.; Hsu, T.-R.; Chen, C.-Y.; Lin, Y.-H.; Chang, F.-J.; Hsieh, C.-H.; Szu, P.-H. Dibromomethane as one-carbon source in organic synthesis: microwave-accelerated α-methylenation of ketones with dibromomethane and diethylamine. Tetrahedron 2003, 59, 1509-1520.

[^0]:

