Supporting Information

Consecutive Aryne Generation Strategy for the Synthesis of 1,3-Diarylpyrazoles

Tsuneyuki Kobayashi, Takamitsu Hosoya, and Suguru Yoshida*

Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Contents	
¹ H and ¹³ C NMR Spectra of Compounds	S2
ROESY Spectra of 5k, 5k', 8b, 10b, 10h, and 10j	S61

¹H and ¹³C NMR Spectra of Compounds ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 3-Methyl-2-(trimethylsilyl)phenol (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 3-methyl-2-(trimethylsilyl)phenyl triflate (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **2b** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 2c (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2d (CDCl₃)

1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **3a** (CDCl₃)

 ^1H NMR (500 MHz, DMSO-d6) and ^{13}C NMR (126 MHz, CDCl3) spectra of 3b

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 3d (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 3f (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 3g (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **3h** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 3i (CDCl₃)

 ^1H NMR (500 MHz, CDCl₃) and ^{13}C NMR (126 MHz, CD₃OD) spectra of 4a

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-bromo-6-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl triflate (CDCl₃)

^1H NMR (500 MHz, CDCl₃) and ^{13}C NMR (126 MHz, DMSO-d₆) spectra of **4b**

^1H NMR (500 MHz, CDCl3) and ^{13}C NMR (126 MHz, CD3OD) spectra of 4d

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-iodo-3-morpholino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl triflate (CDCl₃)

^1H NMR (500 MHz, CDCl₃) and ^{13}C NMR (126 MHz, DMSO-*d*₆) spectra of 4e

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-iodo-3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl triflate (CDCl₃)

^1H NMR (500 MHz, CDCl₃) and ^{13}C NMR (126 MHz, DMSO-d₆) spectra of **4f**

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 2-iodo-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene bis(triflate) (CDCl₃)

он ^{_В}`он TfO όTf ppm 2.00 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 30 20 ppm

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 4g (CD₃OD)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5a** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5d** (CDCl₃)

1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **5e** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5f** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5h** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5j** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 5k (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5k'** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **5l** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 8a (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **8b** (CDCl₃)

1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of 8c (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 8d (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of 8e (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 8f (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 10a (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 10b (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **10c** (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 10d (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **10e** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 10g (CDCl₃)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 10h (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **10i** (CDCl₃)

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **10j** (CDCl₃)

1 H NMR (500 MHz) and 13 C NMR (126 MHz) spectra of **12** (acetone-*d*₆)

ROESY Spectra of 5k, 5k', 8b, 10b, 10h, and 10j

ROESY (400 MHz, JEOL) spectrum of 5k (CDCl₃)

The regiochemistry of **5k** was determined by the ROESY experiment.

The regiochemistry of $\mathbf{5k'}$ was determined by the ROESY experiment. MeQ

The regiochemistry of 8b was determined by the ROESY experiment.

The regiochemistry of **10b** was determined by the ROESY experiment. $\sim \sim \sim \sim^{\mathsf{ROE}}$

C N N N ÓМе ÓМе

The regiochemistry of **10h** was determined by the ROESY experiment.

The regiochemistry of 10j was determined by the ROESY experiment. ROE ROE ROE

