Temperature- and Structural-Dependent Optical Properties and Photophysics of BODIPY Dyes

Sebastian Radunz,^a Werner Kraus,^a Florian A. Bischoff, ^b Franziska Emmerling,^{a,b} Harald Rune Tschiche^c and Ute Resch-Genger^{*a}

^a Department 1 – Analytical Chemistry; Reference Materials, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany. E-mail: ute.resch@bam.de

^b Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
 ^c Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max -Dohrn-Str.
 8-10, 10589 Berlin, Germany.

Electronic Supplementary Information (ESI)

Experimental Section

Synthesis of fluorescent pH sensitive BODIPYs:

The corresponding aldehyde (2.5 mmol, 1.0 eq.) and 2,4-dimethylpyrrole (5.0 mmol, 2.0 eq.) were dissolved in 140 ml dry DCM and 10 ml dry EtOH. After degassing by rapid vacuum-argon cycles (5 times), a few drops of TFA (30 μ l) were added and the reaction mixture was stirred at room temperature under argon atmosphere in the dark overnight. *p*-Chloranil (2.5 mmol, 1.0 eq.) was added and the mixture was stirred for additional 60 min. Prior addition of BF₃ · OEt₂ (25.0 mmol, 10.0 eq.) and 4.3 ml diisopropylethylamine (DIPEA) (25.0 mmol, 10.0 eq.), the DCM/EtOH solvent mixture was removed under reduced pressure and replaced by 100 ml of dry DCM to avoid a reaction between BF₃ · OEt₂ and EtOH. After portionwise addition, the reaction mixture was stirred for 60 minutes. Subsequently, the reaction mixture was prepurified by carrying out a short silica-gel flash column chromatography with DCM as eluent. The resulting crude mixture was concentrated under reduced pressure and further purified by

Fig. S1 Crystal structures of all synthesized BODIPY dyes.

Compound reference	1	2	3	4	5	6	7	8	9	10
Chemical	C19H19BF2N2	C19H18BBrF	2C19H17BBr2F	C19H18BClF2	C19H17BBrC	C19H18BF2N	C19H20BBrF	C19H18BBrF	C19H17BBr2F	C19H16BBr3
formula	0	N20	2N2O	N20	F2N2O	0	N2O2	N20	2N2O	2N2O
Formula Mass /g mol ⁻¹	340.17	419.07	497.97	374.61	452.51	339.16	437.09	419.07	497.97	576.88
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
<i>a /</i> Å	13.8943	16.0546	12.6348	15.8689	12.6330	13.8906	11.4965	7.0391	13.4725	26.5236
b/Å	9.6155	13.4873	10.6680	13.4387	10.7186	25.8723	8.9786	14.1435	19.8851	10.3333
c/Å	13.8974	16.4137	15.1098	16.2719	15.1341	14.1900	18.2352	20.8508	7.4708	17.5893
α/°	90	90	90	90	90	90	90	90	90	90
β/°	113.810	96.9234	107.3285	95.8495	107.1048	91.0486	91.431	91.1289	109.6622	125.3134
γ/°	90	90	90	90	90	90	90	90	90	90
Unit cell volume /ų	1698.7	3528.2	1944.18	3452.0	1958.64	5098.8	1881.68	2075.45	1884.74	3933.8
Temperature /K	150(2)	150(2)	150(2)	150(2)	297(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Space group	P21/n	P21/n	P21/n	P21/n	P21/n	P21/c	Сс	P21/n	Сс	C2/c
No. of formula units per unit cell, Z	4	8	4	8	4	12	4	4	4	8
Absorption coefficient, μ/mm ⁻¹	0.097	2.361	4.199	0.252	2.264	0.097	2.220	2.007	4.332	6.184
No. of reflections measured	29038	107330	74846	92931	42661	130154	27890	67769	30356	101847
No. of independent reflections	4224	10821	9966	11048	4887	12704	4698	6364	6201	13128
Rint	0.1955	0.0933	0.1082	0.1039	0.1257	0.1993	0.0936	0.1050	0.1371	0.0817
Final R1 values (I > 2σ(I))	0.0736	0.0407	0.0459	0.0628	0.0440	0.1276	0.0335	0.0569	0.0546	0.0628
Final <i>wR(F</i> ²) values (<i>I</i> > 2σ(<i>I</i>))	0.1696	0.0986	0.1120	0.1494	0.1111	0.2203	0.0852	0.1203	0.1181	0.1156
Final <i>R1</i> values (all data)	0.1274	0.0520	0.0739	0.0878	0.0654	0.1943	0.0342	0.0719	0.0775	0.1054
Final <i>wR(F</i> ²) values (all data)	0.1989	0.1060	0.1252	0.1640	0.1268	0.2431	0.0859	0.1272	0.1455	0.1287
Goodness of fit on F ²	1.034	1.022	1.013	1.051	1.074	1.222	1.044	1.085	1.071	1.084
CCDC number	1969036	1969037	1969038	1969039	1969040	1969041	1969042	1969043	1969044	1969045

 Table S1. Selected crystallographic data and structure refinement parameters.

Fig. S2 Crystal packing and stabilizing inter- and intramolecular interactions.

Fig. S3 Hypothetical rotation of the meso-aryl along the C8-C10 axis of BODIPY 1 and 7.

Fig. S4 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of non-sterically hindered compound 2 upon excitation at 480 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound 2. c) Fluorescence decay curves for compound 2 in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig.S5 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of non-sterically hindered compound 3 upon excitation at 483 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound 3. c) Fluorescence decay curves for compound 3 in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig. S6 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of non-sterically hindered compound 4 upon excitation at 480 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound 4. c) Fluorescence decay curves for compound 4 in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig. S7 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of non-sterically hindered compound 5 upon excitation at 483 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound 5. c) Fluorescence decay curves for compound 5 in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig. S8 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of non-sterically hindered compound **6** upon excitation at 480 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound **6**. c) Fluorescence decay curves for compound **6** in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function

of temperature.

Fig. S9 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of sterically hindered compound **8** upon excitation at 485 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound **8**. c) Fluorescence decay curves for compound **8** in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig. S10 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of sterically hindered compound 9 upon excitation at 486 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound 9. c) Fluorescence decay curves for compound 9 in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Fig S11 a) Temperature-dependent normalized absorption and normalized fluorescence intensity of sterically hindered compound **10** upon excitation at 495 nm. b) Percentage changes of the absorbance (black squares) at excitation wavelength and at maximum absorbance (full and open symbols, respectively), and percentage changes of the fluorescence intensity (green circles) for integrated emission intensity and at emission maximum (full and open symbols, respectively) in dependence of temperature for compound **10**. c) Fluorescence decay curves for compound **10** in dependence of the temperature (black line represents the instrument response function (IRF)). The inset shows the mono exponential fitted fluorescence lifetime as function of temperature.

Table S2. Calculated absolute and relative energies of the minimum (min1, min2), the transition (TS1, TS2) and intermediate (IS) states and corresponding dihedral angles of BODIPY compounds 1, 3, 6, 7, 8 and 9.

Due	absolute energy $/ E_h$ (relative energy / kcalmol ⁻¹)						dihedral angleª / °					
Dye -	min 1	TS 1	IS	TS 2	min 2	min 1	TS 1	IS	TS 2	min 2	min->TS1	
1	0	16.4	16.1	16.4	0	90	14	3	-14	-90	0.2	
3	0	16.7	-	-	0.03	90	14			-93	0.3	
6	0	12.9	12.7	12.8	0	40	13	3	-13	-40	4.8 * 10-4	
7	0	42.3	-	-	0		34				3.9 * 10 ¹⁸	
8	0	38.2	-	-	0.3	89	29			-92	3.1 * 1015	
9	0	49.2	46.6	49.2	0	90	39	10.5	-39	-90	5.1 * 10 ²³	

^aDihedral angle determined by....

^b Half-life calculated assuming first order reaction kinetics $t_{1/2} = \frac{\ln(2)}{k}$, with $k = \kappa \frac{k_B T}{h} e^{-\frac{\Delta G}{RT}}$ from Eyring equation with k_B = Boltzmann constant, T = 293.15 K, h = Planck constant, $\kappa = 1$ (transmission coefficient) and R = gas constant.

Dree	k _{nr} (T) / 10 ⁸ s ⁻¹							
Dye	5 °C	20 °C	70 °C					
1	0.66 ± 0.05	1.16 ± 0.05	4.91 ± 0.05					
2	0.62 ± 0.06	1.07 ± 0.06	4.29 ± 0.06					
3	0.72 ± 0.05	1.15 ± 0.05	4.32 ± 0.05					
4	0.71 ± 0.07	1.12 ± 0.07	4.53 ± 0.07					
5	0.71 ± 0.05	1.15 ± 0.05	4.36 ± 0.05					
6	0.29 ± 0.02	0.55 ± 0.02	2.57 ± 0.02					
7	0.15 ± 0.01	0.15 ± 0.01	0.24 ± 0.01					
8	0.18 ± 0.01	0.18 ± 0.01	0.30 ± 0.01					
9	0.18 ± 0.01	0.21 ± 0.01	0.43 ± 0.01					
10	0.20 ± 0.01	0.22 ± 0.01	0.37 ± 0.01					

 $\label{eq:stables} \textbf{Table S3.} \ \text{Temperature-dependent} \quad \text{non-radiative decay rates} \ k_{nr}.$

Table S4. Fitting parameters for the determination of ΔE_A for non-radiative decay of the first exited state S₁

Dye	$\frac{\Delta E_A}{R} (\Phi_{Fl}) / K^a$	E _A (Φ _{Fl}) / kcalmol ^{-1a}	$\ln (c2) (\Phi_{Fl})^a$	$R^2 (\Phi_{Fl})$	$rac{\Delta E_A}{R} (au_{Fl}) / K^b$	$E_A(\tau_{Fl}) / kcalmol^{-1b}$	$ln~(A)~(\tau_{Fl})$	$\begin{array}{c} c_3 (\tau_{Fl}) / \\ 10^8 s^{-1*} \end{array}$	$R^{2}\left(\tau_{Fl}\right)$
1	-3030 ± 19	6.02 ± 0.30	9,97 ± 0,06	0,999	-2981 ± 13	5.92 ± 0.30	7,94 ± 0,04	1,75	0,999
2	-3058 ± 12	6.08 ± 0.30	$10,00 \pm 0,04$	0,999	-2956 ± 11	5.87 ± 0.29	7,68 ± 0,03	1,78	0,999
3	-3255 ± 133	6.47 ± 0.32	$10,79 \pm 0,43$	0,979	-3029 ± 10	6.02 ± 0.22	7,94 ± 0,03	1,78	0,999
4	-2972 ± 30	5.91 ± 0.30	9,80 ± 0,10	0,999	-2989 ± 19	5.94 ± 0.30	7,84 ± 0,06	1,79	0,999
5	-3101 ± 100	6.16 ± 0.31	$10,26 \pm 0,32$	0,987	-3046 ± 7	6.05 ± 0.23	$8,02 \pm 0,02$	1,78	0,998
6	-3289 ± 32	6.54 ± 0.33	10,11 ± 0,11	0,999	-3241 ± 28	6.44 ± 0.32	8,02 ± 0,09	1,70	0,999
7	-739 ± 56	1.47 ± 0.29	0,21± 0,18	0,927	_c		_c	_c	_c
8	-751 ± 67	1.49 ± 0.30	$0,52 \pm 0,21$	0,913	_C		_c	_c	_c
9	-1380 ± 109	2.74 ± 0.55	$2,68 \pm 0,44$	0,895	_c		_c	_c	_c
10	-927 ± 71	1.84 ± 0.37	$1,27 \pm 0,27$	0,909	_c		_c	_c	_c

aiteratively determined following eq. 6 with c_1 = 0 $^{\rm b}$ iteratively determined following eq. 8 $^{\rm c}$ could not be determined

S. Radunz, H. R. Tschiche, D. Moldenhauer, U. Resch-Genger, Sensors and Actuators B: 1. Chemical 2017, 251, 490-494.