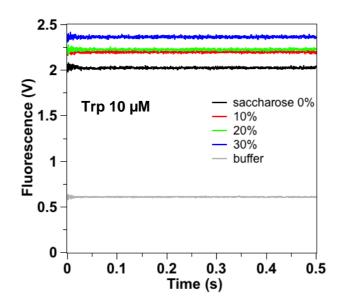

Dynamics of a Key Conformational Transition in the Mechanism of Peroxiredoxin Sulfinylation

by


Alexandre Kriznik^{1,2}, Marouane Libiad³, Hélène Le Cordier¹, Samia Boukhenouna¹, Michel B Toledano³ & Sophie Rahuel-Clermont^{1,2}*

 ¹ IMoPA, Université de Lorraine, CNRS, Biopole, Campus Biologie Santé, F-54000 Nancy, France
² UMS2008 IBSLor, Biophysics and Structural Biology core facility, Université de Lorraine, CNRS, INSERM, Biopole, Campus Biologie Santé, F-54000 Nancy, France
³ Institute for Integrative Biology of the Cell (I2BC), UMR9198, CNRS, CEA-Saclay, Université Paris-Saclay, iBiTecS/SBIGEM, Laboratoire Stress oxydant et Cancer, Bat 142, F-91198 Gif-sur-Yvette Cedex, France

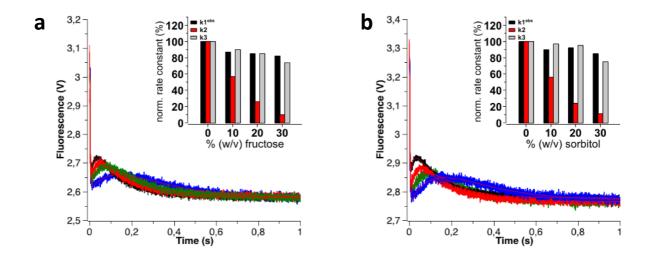
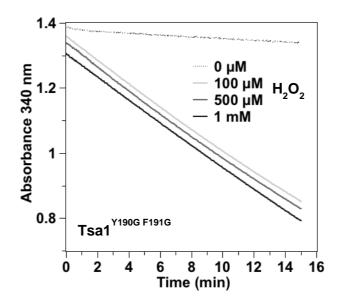
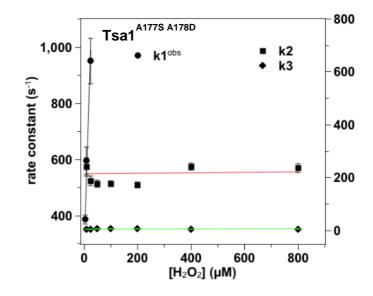
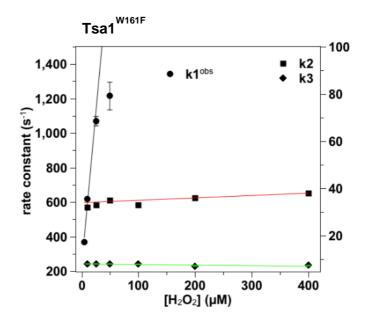
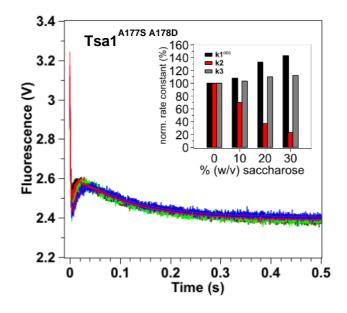

* E-mail: sophie.rahuel@univ-lorraine.fr

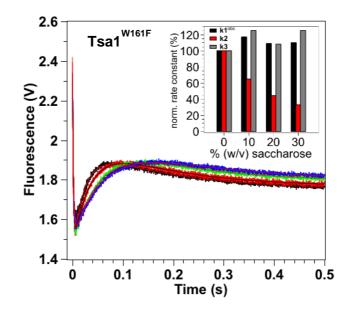
Figure S1. Pre-steady state kinetics for the reaction of Tsa1^{C485} (5 μ M) with increasing H₂O₂ (10, 25, 50 μ M) monitored by Trp fluorescence as in Fig. 2b.

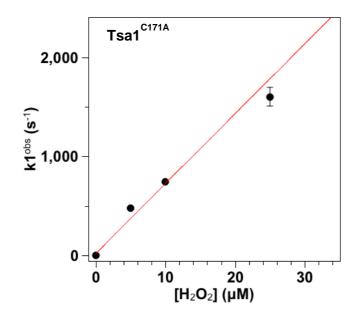

Figure S2. Test of stop flow mixer efficiency in viscous solutions, based on the effect of saccharose (0% black, 10 % red, 20% green and 30% blue) on Trp amino-acid fluorescence (10 μ M) monitored as in Fig. 2b.


Figure S3. Effect of viscogens fructose (a) and sorbitol (b) (0% black, 10 % red, 20% green and 30% blue) on the reaction of Tsa1 (5 μ M) with H₂O₂ (10 μ M) monitored as in Fig. 2, fitted against a 3-exponential equation (red lines). Insets, effect of viscogen concentration on rate constants k1^{obs}, k2 and k3 normalized to 0% viscogen.


Figure S4. Far-UV CD spectra of 5 μ M wild-type Tsa1 (plain) and Tsa1^{Y190G F191G} (dash line) under the reduced (black) and disulfide (red) forms. Measurements were performed in a 0.01 cm flat cell in phosphate (10 mM) NaF (100 mM) buffer pH 7 and are the average of three records.


Figure S5. Steady state kinetics for the determination of the hyperoxidation sensitivity of Tsa1^{Y190G F191G} with H_2O_2 monitored by consumption of NADPH (200 μ M) at 340 nm in the presence *E. coli* thioredoxin reductase (0.25 μ M), *E. coli* Trx1 (5 μ M), Tsa1 (1 μ M) and variable amounts of H_2O_2 (from 100 μ M to 1 mM) in TK buffer. The time courses have been shifted on the y-axis for clarity.


Figure S6. Second order plots and linear fits of the observed rate constants $k1^{obs}$ (circles, black line), k2 (squares, red line) and k3 (diamond, green line) for Tsa1^{A1775 A178D} reaction kinetics with H₂O₂.


Figure S7. Second order plots and linear fits of the observed rate constants $k1^{obs}$ (circles, black line), k2 (squares, red line) and k3 (diamond, green line) for Tsa1^{W161F} reaction kinetics with H₂O₂.

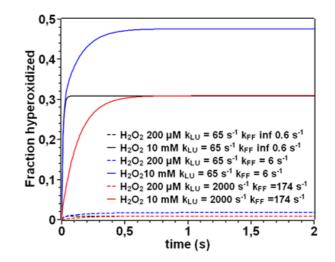

Figure S8. Effect of saccharose (0% black, 10 % red, 20% green and 30% blue) on the reaction of Tsa1^{A1775 A178D} (5 μ M) with H₂O₂ (10 μ M) monitored as in Fig. 2b, fitted against a 3-exponential equation (red line). Inset, effect of saccharose concentration on rate constants k1^{obs}, k2 and k3 normalized to 0% saccharose.

Figure S9. Effect of saccharose (0% black, 10 % red, 20% green and 30% blue) on the reaction of Tsa1^{W161F} (5 μ M) with H₂O₂ (10 μ M) monitored as in Fig. 2b, fitted against a 3-exponential equation (red or black line). Inset, effect of saccharose concentration on rate constants k1^{obs}, k2 and k3 normalized to 0% saccharose.

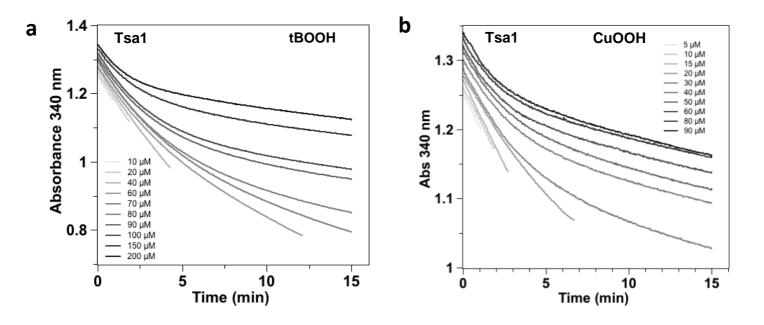


Figure S10. Second order plot and linear fit of the observed rate constants $k1^{obs} vs H_2O_2$ concentration, for the reaction kinetics of Tsa1^{C171A} with H₂O₂.

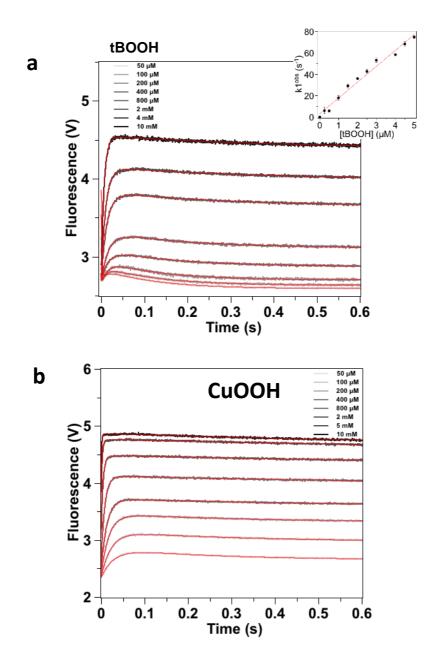


Figure S11. Simulation of the kinetics of formation of Tsa1_{SO2}. Simulations were performed based on the model from Figure 6b, using the fitted rate constants values k_{SOH} and k_{SO2} reported in Table 1 and the indicated values for k_{LU} , k_{FF} and H_2O_2 concentrations. Using fluorescence intensity factors of 62 and 124 % for Tsa1_{SS} and Tsa1_{SO2} respectively (Figure 2a), the fraction of Tsa1 in each state at completion of the reaction was estimated from Figure 6a data. At H_2O_2 concentrations of 200 μ M and 10 mM, Tsa1_{SO2} contributes to 1% and 30 % of the total, and Tsa1_{SS} the remainder up to 100 % (black lines). Fixing k_{LU} at the fitted value of 65 s⁻¹ and setting k_{FF} to values higher than 0.6 s⁻¹ increased the hyperoxidized fraction to values incompatible with experimental observations. For instance, with $k_{FF} = 6 \text{ s}^{-1} \text{Tsa1}_{SO2}$ reaches 2 and 48 % at 200 μ M and 10 mM H_2O_2 , respectively (blue lines). This supports that $k_{FF} << k_{LU}$.

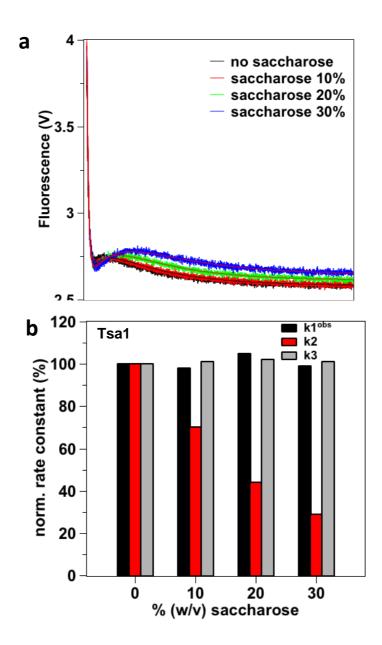

To simulate the Tsa1^{FF}—SOH \Rightarrow Tsa1^{LU}—SOH in rapid equilibrium, k_{LU} was set at 2000 s⁻¹, in which case fractions of Tsa1_{SO2} consistent with observation were obtained for $k_{FF} = 174$ s⁻¹ (red lines). However in this case the FF to LU conformational event would be too fast to be observed in fluorescence, and the rate constant of Tsa1_{SO2} formation would be of ~5 s⁻¹, i.e., mostly controlled by k_{SS} .

Figure S12. Steady state kinetics for the determination of hyperoxidation sensitivity of Tsa1 with tBOOH monitored by consumption of NADPH (200 μ M) at 340 nm in the presence thioredoxin reductase (0.25 μ M), Trx1 (5 μ M), Tsa1 (1 μ M) and variable amounts of (a) tBOOH (from 10 to 200 μ M as indicated), and (b) CuOOH (as indicated). The time courses have been shifted on the y-axis for clarity.

Figure S13. a. Pre-steady state kinetics for the reaction of Tsa1 (5 μ M) with tBOOH (as indicated) monitored as in Fig. 2B, fitted against a multiexponential equation (red line). Inset, precise determination of k1 by second order plot and linear fit of the rate constants k1^{obs} obtained from kinetics measured for the reaction of Tsa1 (0.5 μ M) with low tBOOH concentrations (from 0.5 to 5 μ M). b. Pre-steady state kinetics for the reaction of Tsa1 (5 μ M) with CuOOH (as indicated) monitored as in Fig. 2B, fitted against a multiexponential equation (red line).

Figure S14. a, effect of saccharose (0% black, 10 % red, 20% green and 30% blue) on the reaction of Tsa1 (5 μ M) with tBOOH (10 μ M) monitored as in Fig. 2b, fitted against a 3-exponential equation (red or black line). b, effect of saccharose concentration on rate constants k1^{obs}, k2 and k3 normalized to 0% saccharose.

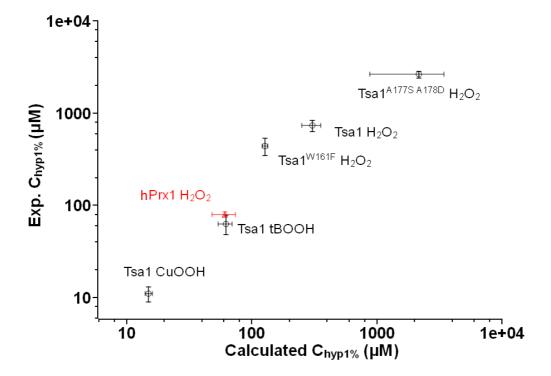
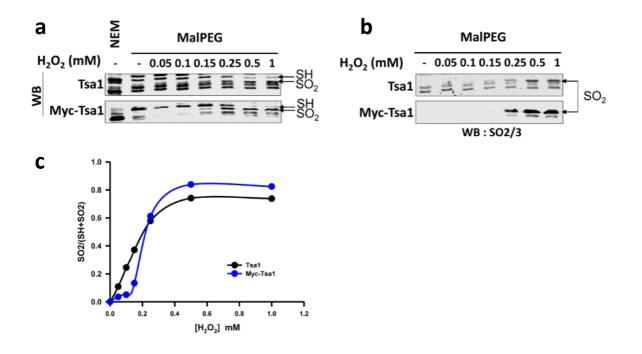



Figure S15. Comparison of the calculated and experimental $C_{hyp1\%}$ for wild-type and mutant Prxs

Figure S16. Validation of the mPEG differential cysteine derivatization procedure to monitor Prx hyperoxidation using N-terminal tagged Tsa1 (Myc-Tsa1), and comparison of the reactivity of Myc-Tsa1 and Tsa1 towards H_2O_2 . a,b, Thiols were derivatized by NEM or mPEG, as indicated, after reduction with DTT, as described in methods, using cell lysates of $\Delta tsa1$ expressing human Tsa1 or Myc-Tsa1 and exposed to H_2O_2 at the indicated concentration. a, Western blot of reduced (-SH) (2 X mPEG) and hyperoxidized (-SO₂H) (1 X mPEG) forms of Tsa1 and Myc-Tsa1 (indicated by black arrows), revealed with an anti-Prx (Tsa1) or anti-Myc (Myc-Tsa1) antibody. Quantification of the degree of oxidation (SO₂H/ SH + SO₂H) is shown below the western blot (c). b, Western blot of the SO₂H forms of Tsa1 and Myc-Tsa1, using a Prx anti-SO_{2/3} antibody and the cell lysates used in a.