Supplementary Information

Four New Luminescent Metal-Organic Frameworks as Multifunctional Sensors for Detecting Fe³⁺, Cr₂O₇²⁻ and Nitromethane

Fa-Yuan Ge, [†] Guo-Hao Sun, [†] Lei Meng, [‡].* Shuang-Shuang Ren[†] and He-Gen Zheng[†].*

[†]State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China. [‡]College of Science, Henan Agricultural University, Zhengzhou, 450002 P. R. China.

> E-mail: zhenghg@nju.edu.cn; Fax: (+86)-25-89682309 E-mail: xleimeng@163.com.

Figure **S1**. IR spectrum of the L ligand.

- Figure S2. IR spectrum of MOF 1.
- Figure S3. IR spectrum of MOF 2.
- Figure S4. IR spectrum of MOF 3.
- Figure **S5**. IR spectrum of MOF **4**.
- Figure S6. The PXRD patterns of 1 before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.
- Figure **S7**. The PXRD patterns of **2** before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.
- Figure **S8**. The PXRD patterns of **3** before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.
- Figure **S9**. The PXRD patterns of **4** before and after immersed in Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and nitromethane for 3 days.
- Figure **S10**. The TGA diagram of MOF **1**.
- Figure **S11**. The TGA diagram of MOF **2**.
- Figure **S12**. The TGA diagram of MOF **3**.
- Figure **S13**. The TGA diagram of MOF **4**.
- Figure S14. Liquid UV/vis spectra of different metal cations in aqueous solutions.
- Figure **S15**. Liquid UV/vis spectra of different anions in aqueous solutions.
- Figure **S16**. Solid state UV/vis spectra of MOFs 1-4.
- Table S1. Crystal date for complexes 1-4.
- Table S2. Selected bond lengths and angles for MOFs 1-4.

Figure S1 IR spectrum of the L ligand.

Figure S2 IR spectrum of MOF 1.

Figure S3 IR spectrum of MOF 2.

Figure S4 IR spectrum of MOF 3.

Figure S5 IR spectrum of MOF 4.

Figure S6 The PXRD patterns of 1 before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.

Figure **S7** The PXRD patterns of **2** before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.

Figure **S8** The PXRD patterns of **3** before and after immersed in Fe^{3+} , $Cr_2O_7^{2-}$ and nitromethane for 3 days.

Figure **S9** The PXRD patterns of **4** before and after immersed in Fe^{3+} , Cr_2O7^{2-} and nitromethane for 3 days.

Figure **S10** The TGA diagram of MOF **1**.

Figure **S12** The TGA diagram of MOF **3**.

Figure S13 The TGA diagram of MOF 4.

Figure S14 Liquid UV/vis spectra of different metal cations in aqueous solutions.

Figure S15 Liquid UV/vis spectra of different anions in aqueous solutions.

Figure S16 Solid state UV/vis spectra of MOFs 1-4.

MOFs	1	2	3 ^a	4	
Formula	$C_{32}H_{24}ZnN_2O_6S_3$	$C_{26}H_{20}ZnN_2O_4S_2$	$C_{32}H_{24}CdN_2O_5S_2$	$C_{32}H_{38}CdN_4O_8S_2$	
Formula weight	694.08	553.93	693.05	783.18	
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	
Space group	PĪ	<i>C</i> 2/c	PĪ	$P\overline{1}$	
<i>a</i> / Å	11.0591(19)	22.955(2)	9.5445(10)	7.2280(8)	
b / Å	12.268(2)	6.2161(6)	12.8573(14)	10.7330(11)	
<i>c</i> / Å	13.439(2)	19.744(2)	15.4179(17)	11.7457(13)	
lpha / °	116.419(3)	90	106.726(2)	108.220(2)	
eta / °	94.590(3)	118.4960(10)	98.616(2)	91.311(2)	
γ/°	102.601(3)	90	90.113(2)	100.104(2)	
$V/\text{\AA}^3$	1560.5(5)	2476.0(4)	1789.5(3)	849.15(16)	
Ζ	2	4	2	1	
$D_{calcd}/\mathrm{g}\cdot\mathrm{cm}^{-3}$	1.477	1.486	1.286	1.532	
μ / mm ⁻¹	1.035	1.196	0.763	0.821	
<i>F</i> (000)	712	1136	700	402	
heta min-max / °	1.884, 27.473	2.019, 27.240	1.396, 27.160	1.832, 27.436	
Tot., uniq. data	10643, 7093	10294, 2731	15596, 7757	5759, 3842	
<i>R</i> (int)	0.0470	0.0369	0.036	0.0887	
Observed	7002	2721	7757	2942	
data[$I \ge 2\sigma(I)$]	/093	2/31	//5/	3842	
N _{ref} , N _{par}	594, 490	0, 160	156, 418	225, 265	
GOF on F^2	0.923	1.073	1.037	0.938	
$R_1, wR_2[I > 2\sigma(I)]^{I}$	^b 0.0468, 0.1072	2 0.0348, 0.0920	0.0380, 0.1064	0.0415, 0.0902	
R_1, wR_2 (all data)	0.0788, 0.118	8 0.0407, 0.0974	0.0471, 0.1131	0.0510, 0.0938	

Table S1. Crystal data and structure refinement for MOFs 1-4.

[a] The residual electron densities were flattened by the SQUEEZE routine in PLATON.

[b] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o|$, $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$; where $w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP]$, $P = (F_o^2 + 2F_c^2) / 3$.

	-	1	
Zn(1)-O(4)#1	1.859(5)	Zn(1)-O(2)	2.121(2)
Zn(1)-N(1)	2.031(2)	Zn(1)-O(1)	2.254(2)
Zn(1)-N(2)	2.116(2)		
O(4)#1-Zn(1)-N(1)	127.2(3)	N(2)-Zn(1)-O(2)	97.63(9)
O(4)#1-Zn(1)-N(2)	90.9(2)	O(4)#1-Zn(1)-O(1)	98.6(2)
N(1)-Zn(1)-N(2)	100.09(9)	N(1)-Zn(1)-O(1)	90.93(9)
O(4)#1-Zn(1)-O(2)	127.3(3)	N(2)-Zn(1)-O(1)	156.86(10)
N(1)-Zn(1)-O(2)	102.40(9)	O(2)-Zn(1)-O(1)	59.92(8)
		2	
Zn(1)-O(1)#1	1.9384(16)	Zn(1)-N(1)#1	2.0505(19)
Zn(1)-O(1)	1.9384(16)	Zn(1)-N(1)	2.0505(19)
O(1)#1-Zn(1)-O(1)	100.81(11)	O(1)-Zn(1)-N(1)	124.28(8)
O(1)-Zn(1)-N(1)#1	104.13(8)	N(1)#1-Zn(1)-N(1)	101.41(11)
O(1)#1-Zn(1)-N(1)	104.13(8)	O(1)#1-Zn(1)-N(1)#1	124.28(8)
		3	
Cd(1)-O(2)	2.223(2)	Cd(1)-N(2)#3	2.372(2)
Cd(1)-O(1)#1	2.273(2)	Cd(1)-O(3)#2	2.391(2)
Cd(1)-N(1)	2.366(2)	Cd(1)-O(4)#2	2.366(2)
O(2)-Cd(1)-O(1)#1	102.35(9)	N(1)-Cd(1)-N(2)#3	166.56(11)
O(2)-Cd(1)-N(1)	104.81(10)	O(2)-Cd(1)-O(3)#2	150.02(9)
O(1)#1-Cd(1)-N(1)	90.60(9)	O(1)#1-Cd(1)-O(3)#2	105.39(9)
O(2)-Cd(1)-N(2)#3	88.27(10)	N(1)-Cd(1)-O(3)#2	86.14(10)
O(1)#1-Cd(1)-N(2)#3	83.46(8)	N(2)#3-Cd(1)-O(3)#2	83.84(9)

Table **S2.** Selected bond lengths [Å] and angles [°] for MOFs 1-4.

O(2)-Cd(1)-O(4)#2	96.51(9)	O(1)#1-Cd(1)-O(4)#2	160.00(9)
O(4)#2-Cd(1)-N(2)#3	90.58(9)	O(4)#2-Cd(1)-O(3)#2	54.85(9)
O(4)#2-Cd(1)-N(1)	90.97(9)		
		4	
Cd(1)-O(1)#1	2.281(2)	Cd(1)-N(1)	2.340(2)
Cd(1)-O(1)	2.281(2)	Cd(1)-O(1W)#1	2.356(3)
Cd(1)-N(1)#1	2.340(2)	Cd(1)-O(1W)	2.356(3)
O(1)#1-Cd(1)-O(1)	180.0	N(1)#1-Cd(1)-O(1W)#1	84.69(9)
O(1)#1-Cd(1)-N(1)#1	89.47(9)	N(1)-Cd(1)-O(1W)#1	95.31(9)
O(1)-Cd(1)-N(1)#1	90.53(9)	O(1)#1-Cd(1)-O(1W)	89.34(8)
O(1)#1-Cd(1)-N(1)	90.53(9)	O(1)-Cd(1)-O(1W)	90.66(8)
O(1)-Cd(1)-N(1)	89.47(9)	N(1)#1-Cd(1)-O(1W)	95.31(9)
N(1)#1-Cd(1)-N(1)	180.0	N(1)-Cd(1)-O(1W)	84.69(9)
O(1)#1-Cd(1)-O(1W)#1	90.65(8)	O(1W)#1-Cd(1)-O(1W)	180.00(9)
O(1)-Cd(1)-O(1W)#1	89.34(8)		

Symmetry codes: #1: *x*, *y*+1, *z*+1; #2: -*x*+3, -*y*+2, -*z*+2; #3: -*x*+1, -*y*, -*z*+1; #4: *x*, *y*-1, *z*-1 for 1; #1: -*x*, *y*, -*z*+1/2; #2: -*x*+1/2, -*y*+3/2, -*z*+1; #3: -*x*, -*y*-1, -*z* for 2; #1: -*x*+1, -*y*+2, -*z*+2; #2: *x*, *y*, *z*+1; #3: *x*-1, *y*+1, *z*; #4: *x*, *y*, *z*-1; #5: *x*+1, *y*-1, *z* for 3; #1: -*x*+1, -*y*+1, -*z*+1; #2: -*x*, -*y*+2, -*z*+2; #3: -*x*+2, -*y*+2, -*z*+1 for 4.