Copper Cobalt Selenide as a High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting: Combined Experimental and Theoretical Study

Xi Cao^a, Julia E. Medvedeva^{b*} and Manashi Nath^{a*}

^aDepartment of Chemistry, Missouri University of Science & Technology, Rolla, Missouri 65409, United States.

^bDepartment of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.

*Email: nathm@mst.edu

Experimental Section

1. Electrodeposition of RuO₂ on Au coated glass:

In a previous reported procedure of electrodeposition of RuO_2 ,^{s1} $RuCl_3$ (0.452 g) and KCl (2.952 g) were mixed in 40 ml of 0.01M HCl, cyclic voltammetry from 0.015 to 0.915 V (vs Ag|AgCl) was applied for 100 cycles at a scan rate of 50 mV s⁻¹. Finally, the products were heated at 200 °C for 3 h under air.

2. Calculation of Tafel Slope. The Tafel slope is an important parameter to explain the kinetics of electrocatalytic performance of CuCo₂Se₄ and the equation is shown below.

$$\eta = a + \frac{2.3RT}{anF} \log(j)$$

Where η is the overpotential, α is transfer coefficient and the other symbols have their usual meaning. The Tafel slope is given by 2.3RT/anF.

3. Calculation of Turnover Frequency (TOF)

The turnover frequency (TOF) was calculated from the following equation:

$$TOF = \frac{I}{4 \times F \times m}$$

where I is the current in Amperes, F is the Faraday constant and m is the number of moles of the active catalyst.

4. Calculation of surface energy through DFT:

$$E_{Surface} = \frac{1}{2} \left(E_{Total \ surface} - E_{Bulk} \right)$$

5. Calculation of adsorption energy through DFT:

$$E_{Adsorption} = \left(E_{Surface with OH} - E_{Surface} - E_{OH} \right)$$

Figure S1. Cyclic voltammograms measured for CoSe (a), Cu_2Se (b) and $CuCo_2Se_4$ (c) in N₂-saturated 1.0 M KOH solution at different scan rates from 10 to 60 mV s⁻¹. The inset is a plot of both anodic and cathodic current measured at 0.01 V vs Ag|AgCl (KCl saturated) as a function of scan rate.

Table S1. Electrochemically active surface area (ECSA) and roughness factor (RF) of CoSe, Cu_2Se and $CuCo_2Se_4$.

Catalysts	ECSA (cm ²)	RF
Cu ₂ Se	10.05	143.57
CoSe	8.875	126.79
CuCo ₂ Se ₄	5.325	76.07

Figure S2. Zoom-in LSV curve of $CoCu_2Se_4@Au$ in N₂-saturated 1.0 M KOH at a scan rate of 10 mV s⁻¹ in order to obtain the onset potential.

Figure S3. Gravimetric current density for CuCo₂Se₄.

Figure S4. TOF of CuCo₂Se₄ and RuO₂.

Figure S5. LSV curves of $CoCu_2Se_4$ on Au and CFP in N₂-saturated 1.0 M KOH at a scan rate of 10 mV s^{-1} .

Figure S6. Comparison of OER LSVs of CoSe, Co_7Se_8 , Cu_3Se_2 , Cu_2Se and $CuCo_2Se_4$ measured in N₂-saturated 1.0 M KOH at a scan rate of 10 mV s⁻¹.

Figure S7. SEM images of as-synthesized CuCo₂Se₄ (a) and CuCo₂Se₄ after 8 h chronoamperometry in 1.0 M KOH.

Table S2. Comparison of EDS atomic ratio of the catalyst before and after 8 h chronoamperometry.

	EDS (Atomic %)		
	Со	Cu	Se
As-deposited	30.9	17.0	52.1
After 8h chronoamperometry	30.9	17.5	51.6

Figure S8. Comparison of XPS of CuCo₂Se₄ before and after stability (a) Co 2p, (b) Cu 2p, (c) Se 3d and (d) O 1s.

Figure S9. Zoom-in Figure of HER plots in order to measure the HER onset potential.

Figure S10. TOF of CuCo₂Se₄ for HER process.

Figure S11. Overall water splitting of CuCo₂Se₄@Au in N₂-saturated 1.0 M KOH solution.

Figure S12. LSV curves of water electrolysis at a scan rate of 10 mV s⁻¹ in N₂-saturated 1.0 M KOH solution. Black curve shows $CuCo_2Se_4$ catalyst as both anode and cathode, red one represents $CuCo_2Se_4$ catalyst as anode while Pt as cathode, and blue curve shows RuO_2 as anode while Pt as cathode.

Energy Efficiency for overall water splitting

Catalyst	OER, V ^a	HER, V ^a	E_{cell} / V	Energy efficiency ^b / %
	at 50 mA cm ⁻²			
CuCo ₂ Se ₄	1.55	0.232	1.782	83.05
Pt		0.08	1.74	95.06
RuO ₂	1.66		1./4	83.00

 Table S3. Calculation of energy efficiency of water electrolyzer (%)

^aAll voltages are vs RHE. ^bEnergy efficiency of water electrolysis \cong (1.48 *V*/*Ecell*) ×100.

Figure S13. (a) The total density of states (DOS) of bulk $CuCo_2Se_4$ and (b-d) partial density of states (PDOS) of Cu 3d, Co 3d and Se 4p calculated using GGA (dashed line) and GGA+U with U = 6 eV for Co d-states and U = 4 eV for Cu d-states (solid line).

Table S4. Comparison of total energy, magnetic moment, distance of Co-Se and bond length distortion at different layers among bulk CoCu₂Se₄, (100) surface and (111) with Co/Cu and Co termination as calculated from GGA+U.

	$E_{surface} / eV$	Magnetic Moment/ μ_B		Distance (Co-Se) / Å	Distortion (bond length)
Bulk		0.79		2.4	0
		2.1	Layer 0	2.26	0.018
				2.35 (2×)	
				2.3	
				2.4	
		0.9	Layer 1	2.35 (2×)	0.0099
				2.40 (2×)	
				2.39	
100	136			2.42	
		0.86	Layer 2	2.4	0.0044
				2.41	
				2.38 (4×)	
		0.78	Layer 3	2.37 (2×)	0.0029
				2.39 (4×)	
		2.29	Layer 0	2.23 (3×)	0.0002
		1.47	Layer 1	2.36 (3×)	0.0087
				2.41	
				2.40 (2×)	
111 Co/Cu	280	2.07	Layer 2	2.39 (4×)	0.0018
				2.38 (2×)	
		2.13	Layer 3	2.38 (2×)	0.0009
				2.39 (4×)	
		2.23	Layer 0	2.22	0.0175

				2.25	
				2.27	
				2.35	
		2.16	Layer 1	2.36	0.00381
	242			2.37 (2×)	
				2.39	
111 Co		0.91	Layer 2	2.37 (2×)	0.00307
				2.38 (2×)	
				2.39	
		0.84	Layer 3	3.38 (2×)	0.00193
				2.39 (4×)	

Figure S14. Comparison of partial electronic density of states (PDOS) of Co atoms in the surface top layer with the one in the center layer in the (100) slab (a) and (111) slab with Co/Cu termination (b).

Figure S15. Partial density of states (PDOS) of Cu atom in (100) surface before OH⁻ attachment (a), Cu atom after OH⁻ attachment (b), OH⁻ after attached on Cu atom (c). PDOS of Cu atom in (111) surface before OH⁻ attachment (d), Cu atom after OH⁻ attachment (e), OH⁻ after attached on Cu atom (f).

Surface	Atom attached with OH ⁻	Adsorption Energy / eV
(100)	Со	-2.96
	Cu	-2.43
(111)	Со	-10.02
Co/Cu	Cu	-7.99

Table S5. OH⁻ adsorption Energy on Co and Cu atoms in (100) and (111) Co/Cu surfaces.

		OFP		T		
		(JEK	Г	1EK	
Electrocatalyst	Electrolyte	Onset potential (V vs RHE)	Overpotential (mV vs RHE) @ 10 mA·cm ⁻²	Onset potential (V vs RHE)	Overpotential (mV vs RHE) @ 10 mA·cm ⁻²	Reference
CuCo ₂ Se ₄	1 M KOH	1.43	320ª	0.07	120	This work
Co ₇ Se ₈	1 M KOH	1.45	290	0.317	472	S2
Cu ₂ Se	1 M KOH	1.50	320	_d	-	S3
CuCo ₂ O ₄ /NrG O	1 M KOH	1.52	360	-	-	S4
CuCo ₂ S ₄	1 M KOH	1.43	310	-	-	S5
(Ni, Co) _{0.85} Se	1 M KOH	1.47	255	-	-	S6
CoSe ₂	1 M KOH	1.55	430	0.1 ^b	160	S7
CuO	1 M KOH	1.59	470	-	-	S8
CuO	1 M KOH	1.57	420			S9
CuCo ₂ S ₄ /CF	1 M KOH	1.43	295°	-	-	S10
Cu ₃ P/NF	1 M KOH	1.49	320	0.12	150	S11
CuO– TCNQ/CF	1 M KOH	1.55	355 ^a	-	-	S12
Co ₃ O ₄ /NiCo ₂ O ₄	1 M KOH	1.53	340	-	-	S13
Cu ₂ MoS ₄	0.1 M phosphate buffer	-	-	0.55	750	S14

 Table S6. Comparison of catalytic activity for different Co and/or Cu based OER / HER
 electrocatalysts in alkaline medium.

^a Overpotential at 50 mA cm⁻². ^b HER was studied in 0.5 M H₂SO₄. ^c Overpotential at 100 mA cm⁻². ^d – indicates no relevant values reported in the corresponding literature.

Reference:

S1 K. M. Kim, J. H. Nam, Y. G. Lee, W. Il Cho and J. M. Ko, Curr. Appl. Phys., 2013, 13, 1702–

1706.

- Masud, J.; Swesi, A. T.; Liyanage, W. P. R.; Nath, M. Cobalt Selenide Nanostructures: An Efficient Bifunctional Catalyst with High Current Density at Low Coverage. ACS Appl. Mater. Interfaces 2016, 8, 17292–17302.
- Masud, J.; Liyanage, W. P. R.; Cao, X.; Saxena, A.; Nath, M. Copper Selenides as High Efficiency Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2018, 1, 4075–4083.
- Bikkarolla, S. K.; Papakonstantinou, P. CuCo₂O₄ Nanoparticles on Nitrogenated Graphene as
 Highly Efficient Oxygen Evolution Catalyst. *J. Power Sources* 2015, *281*, 243–251.
- S5 Chauhan, M.; Reddy, K. P.; Gopinath, C. S.; Deka, S. Copper Cobalt Sulfide Nanosheets
 Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. *ACS Catal.* 2017, *7*, 5871–5879.
- S6 Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications. *Adv. Mater.* 2016, 28, 77–85.
- Kwak, I. H.; Im, H. S.; Jang, D. M.; Kim, Y. W.; Park, K.; Lim, Y. R.; Cha, E. H.; Park, J. CoSe₂ and NiSe₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. *ACS Appl. Mater. Interfaces* 2016, *8*, 5327–5334.
- Liu, X.; Cui, S.; Qian, M.; Sun, Z.; Du, P. In Situ Generated Highly Active Copper Oxide
 Catalysts for the Oxygen Evolution Reaction at Low Overpotential in Alkaline Solutions. *Chem. Commun.* 2016, *52*, 5546–5549.
- S9 Qian, M.; Liu, X.; Cui, S.; Jia, H.; Du, P. Copper Oxide Nanosheets Prepared by Molten Salt Method for Efficient Electrocatalytic Oxygen Evolution Reaction with Low Catalyst Loading. *Electrochim. Acta* 2018, 263, 318–327.

- S10 Yang, L.; Xie, L.; Ren, X.; Wang, Z.; Liu, Z.; Du, G.; Asiri, A. M.; Yao, Y.; Sun, X. Hierarchical CuCo₂S₄ Nanoarray for High–efficient and Durable Water Oxidation Electrocatalysis. *Chem. Commun.* 2017, 54, 78–81.
- S11 Han, A.; Zhang, H.; Yuan, R.; Ji, H.; Du, P. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 2240–2248.
- Ren, X.; Ji, X.; Wei, Y.; Wu, D.; Zhang, Y.; Ma, M.; Liu, Z.; Asiri, A. M.; Wei, Q.; Sun, X. In
 Situ Electrochemical Development of Copper Oxide Nanocatalysts within a TCNQ Nanowire
 Array: A Highly Conductive Electrocatalyst for the Oxygen Evolution Reaction. *Chem. Commun.*2018, 54, 1425–1428.
- S13 Hu, H.; Guan, B.; Xia, B.; Lou, X. W. Designed Formation of Co₃O₄/NiCo₂O₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. *J. Am. Chem. Soc.* 2015, *137*, 5590–5595.
- S14 Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.;
 Artero, V.; Wong, L. H.; Loo, J.; Barber, J. Copper Molybdenum Sulfide: A New Efficient
 Electrocatalyst for Hydrogen Production from Water. *Energy Environ. Sci.* 2012, *5*, 8912–8916.