Supporting Information

Transient de-protonation of the chromophore affects protein dynamics proximal and distal to the linear tetrapyrrole chromophore in phytochrome Cph1

Maryam Sadeghi¹, Jens Balke¹, Constantin Schneider¹, Soshichiro Nagano³, Johannes Stellmacher¹, Günter Lochnit², Christina Lang³, Chris Weise⁴, Jon Hughes³, Ulrike Alexiev ^{1*}

¹Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany, ²Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany, ³Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany, ⁴Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany.

Content

Figure S1: Structure of the chromophore binding pocket	S3
Figure S2: MALDI-MS analysis of Cph1-PGP –AF	S4
Table S1: Cph1 tryptic peptides detected by MALDI-MS sorted by their position in t sequence	he protein S5
Figure S3: MS analysis of Cph1-PGP-C371S-AF	S6
Figure S4: Cph1-PGP- apo-protein as control	S7
Table S2: Time-resolved anisotropy fit results of Cph1-PGP-AF	S8
Table S3: Time-resolved anisotropy fit results of Cph1-PGP-C371S-AF	
Table S4: Time-resolved anisotropy fit results of Cph1-PG-AF	

Figure S1: Structure of the chromophore binding pocket. Chromophore binding pocket of Cph1-PGP structure (pdb: 2VEA) with residues. Chromophore is shown in dark gray and for the formation of the binding pocket important residues are shown in yellow. Crystal waters (W1–W7) are plotted as spheres in cyan. Possible water bridges are shown as cyan dashed lines. Figure was created with PyMol.

Figure S2: MALDI-MS analysis of Cph1-PGP-AF. The intensity and the mass of the peptides, which include C371-IAA, C371-AF, and C120-AF are marked with red. Based on the MS analysis the Cph1-PGP-AF construct is labeled with IAF at position 371 (the most exposed cystein according to the structure) and at position 120 (rather buried). Table S1 summarizes the respective tryptic peptides.

Table S1: Cph1 tryptic peptides detected by MALDI-MS sorted by their position in the protein sequence. *Peak* # indicates the peak number in the spectrum shown in Fig. S1; M+H (*expt*) is the mass determined experimentally; M+H (*calc*) is the peptide mass calculated from the Cph1 protein sequence; *ppm* is the relative deviation of the experimental mass from the theoretical value given in parts per million; *intensity* gives the intensity value from the mass spectrum for the respective peak; #MC is the maximal number of allowed missed cleavages by trypsin (incomplete cleavage); *position* gives the start and the end of the peptide; *peptide sequence* shows the underlying Cph 1 peptide sequence, and *modifications* lists side chain modifications taken into account in the peptide assignment. Search parameters used: Peptide tolerance: 150 ppm, specificity: Trypsin/P, optional modifications: N-ethylmaleimide (NEM,) 5-iodoacetamidofluorescein (5-IAF). IAF modifications are marked in bold.

Peak	M+H	M+H						Cysteine
#	(evnt)	(calc)	nnm	Intensity	#MC	Position	Pentide sequence	Modifications
104	(CAPt)	(calc)	PP III	407	-	014.055		
194	4.024.875	4.024.492	20	137	0	014-055		C49 INEIVI
9	1 051 029	1 051 076	-52	4420	0	050-005		
46	1 315 671	1 315 722	-25	663 491	0	81 - 93		
70	1 752 782	1 752 827	-30.70	12 174 456	0	08 - 112	VMGDDEVIEDGVEHR	
80	1 769 789	1 769 832	-31.43	1 755 126	0	98 - 112	VMGDDEVIEDGVEHR	
182	3 880 995	3 880 831	42 244	1 982 818	Ő	113 - 146	NSDGLI VCELEPAYTSDNI PELGEYHMANAAI NR	C120 NFM
191	4 158 422	4 158 852	-103 5	74 895	0	113 - 146		C120-IAF
175	2 755 925	2 755 702	12 012	602 201	0	112 146		CILOIAI
62	3./33.033	3./33./83	-25 16	7 247 262	0	115 - 140		
121	2265 03	2265.06	-13.10	782 111	1	173 - 100		
121	2205.05	2203.00	-13.40	785.111	1	173 - 191		
68	1.602.641	1.602.703	-39	298.068	1	178 - 191	FDENNHGDVIAEDK	
141	2.615.182	2.615.219	-14.38	246.053	0	192 - 213	RDDMEPYLGLHYPESDIPQPAR	
144	2.755.304	2.755.326	-7.93	225.742	1	192 - 214	RDDMEPYLGLHYPESDIPQPARR	
140	2.599.187	2.599.225	-14.35	18.767.377	2	192 - 213	RDDMEPYLGLHYPESDIPQPAR	
130	2.443.085	2.443.123	-15.91	5.699.839	1	193 - 213	DDMEPYLGLHYPESDIPQPAR	
140	2.599.187	2.599.225	-14.35	18.767.377	0	193 - 214	DDMEPYLGLHYPESDIPQPARR	
141	2.615.182	2.615.219	-14.38	246.053	1	193 - 214		
166	3269.8	3.269.816	-4.892	110.718	1	215 - 244	LFIHNPIRVIPDVYGVAVPLTPAVNPSTNR	
20	1.009.572	1.009.594	-21.96	11.033.526	1	215 - 222		
123	2.279.189	2.279.239	-22.22	43.297.877	0	223 - 244		
159	3.019.515	3.019.539	-7.793	1.606.118	0	245 - 265	AVDLTESILRSAYHCHLIYLK	
32	1.110.598	1.110.020	-25.29	20.303.360	1	245 - 254		
162	2 107 625	2 107 671	-54.56	2.170.281	0	200 - 200		
105	1 027 672	1 027 044	-14.47	284 021	1	200 - 295		C200 NEM
50	272 / 21	873 510	-140.4	304.921 48 800 021	0	200 - 293	VIDEFLIP	C209 INLIVI
16	05/ 388	954 414	-44.12	25 226 176	0	201 - 302	ACEEGO	C305 NEM
3	829 337	829 366	-20.70	1930 18	0	304 - 310	ACEFEGR	COOD INLINI
110	2 120 919	2 120 977	-27.3	37 227 899	0	311 - 328		
56	1 464 743	1 464 806	-43.08	1 388 157	0	329 - 341	VOLAFHEAVLIDK	
196	5 118 289	5 118 439	-29 27	174 047	0	342 - 386		C371-IAF
80	1 874 805	1874 87	-34 54	27 202 204	2	342 - 358		
82	1.874.805	1 780 015	-34.34	5045 42	2	342 - 336		C371 NEM
72	1664 78	1 664 868	-52 73	345 626	0	359 - 375		COVENCENT
39	1 213 611	1 213 667	-46.26	2 678 918	0 0	376 - 386	LILVGETPDEK	
61	1 532 781	1 532 822	-26.96	43 839 352	Ő	387 - 398	AVOYLOWIENR	
189	4.048.232	4.048.049	45.087	1.881.463	õ	387 - 420	AVOYLLOWLENREVODVEETSSLSOIYPDAVNEK	
134	2.534.174	2.534.245	-28	3901.73	1	387 - 420	EVODVEETSSLSOIYPDAVNEK	
196	5.118.289	5.117.602	134.25	174.047	0	421 - 466	SVASGLLAIPIARHNFLLWFRPEVLQTVNWGGDPNHAYEATQED GK	
45	1.267.739	1.267.773	-26.79	33.265.674	2	421 - 433	SVASGLLAIPIAR	
180	3.868.999	3.868.847	39.284	10.246.094	0	434 - 466	HNFLLWFRPEVLQTVNWGGDPNHAYEATQEDGK	
144	2.755.304	2.755.259	16.122	225.742	1	442 - 466	PEVLQTVNWGGDPNHAYEATQEDGK	
112	2.166.099	2.166.182	-38.19	250.195	0	467 - 483	IELHPRQSFDLWKEIVR	
170	3.412.845	3.412.863	-5.211	176.442	2	473 - 501	QSFDLWKEIVRLQSLPWQSVEIQSALALK	
13	923.42	923.462	-46	3997.27	2	473 - 479	QSFDLWK	
101	2.011.034	2.011.122	-43.7	7.627.675	0	484 - 501	LQSLPWQSVEIQSALALK	
12	911.571	911.604	-36.2	19.536.075	0	503 - 510	AIVNLILR	

Figure S3: MS analysis of Cph1-PGP-C371S-AF. A) 10-20% acrylamide gradient SDS-PAGE of Cph1-PGP-C371S-AF undigested and in-solution digested with Lys-C. B) Mass spectrum of in-gel digest of band (fraction) 5 with Trypsin in the m/z range of 700-2700. C) Mass spectrum zoom into the m/z region from 1213 to 1222. The mass 1216.51 can be identified with the peptide pos. 304-310 (sequence ACEFFGR theoretical mass 829.37 Da) with the cysteine residue 'C305' modified with IAF (+387. 07 Da). Based on the MS analysis of the LysC/tryptic digest, the corresponding mass spectrum reveals IAF labeling at position 305. The other digest fractions do not contain IAF-labeled peptides.

Figure S4: Cph1-PGP-apo-protein as control. A) UV-vis absorption spectra of purified Cph1-PGP after assembling PCB with the apo-protein overnight on ice, shown in the Pr-state (red curve) and the Pr+Pfr photoequilibrium mixture (blue curve) in 50 mM Tris-HCl, 150 mM NaCl pH 7.8. B) Absorption difference between Pr and Pr+Pfr state as shown in A). C) UV-vis absorption spectra of IAF-labeled Cph1-PGP apoprotein (black curve) and IAF (red curve) in 50 mM Tris-HCl, 150 mM NaCl pH 7.8. D) UV-Vis absorption spectrum of IAF-labeled Cph1-PGP-apoprotein together with PCB. No chromophore assembly occurs with the IAF-labeled apoprotein. E) Anisotropy decay of IAF-labeled Cph1-PGP-apo-and holoprotein at pH 9 (red and blue curves, respectively). F) Anisotropy decays of IAF-labeled Cph1-PGP-apoprotein at pH 7.8 and 9.0 (blue and red curves, respectively).

Table S2: Time-resolved anisotropy fit results of Cph1-PGP-AF. r_0 is initial anisotropy and the amplitudes β_1 and β_2 indicate the degree of depolarization of the anisotropy decay components with the correlation times ϕ_1 and ϕ_2 . The reduced χ_2 (χ_{red}^2) is given as a measure of the goodness of the fit. The corresponding fluorescence lifetimes of bound IAF were 0.2 ns, 1.3 ns, and 3.9 ns (pH 8). The fit error is 10%.

pН	r ₀	$\phi_l(ns)$	$\phi_2(\mathrm{ns})$	$\phi_3 (\mathrm{ns})^{\mathrm{a}}$	β1	β ₂	β ₃	χ red ²
6.6	0.30	0.11	2.8	30	0.063	0.051	0.183	0.98
7.0	0.37	0.09	1.4	30	0.104	0.056	0.211	1.07
7.5	0.35	0.08	1.3	30	0.091	0.060	0.199	1.26
8.0	0.34	0.07	1.2	30	0.090	0.059	0.191	1.12
8.5	0.33	0.10	1.3	30	0.088	0.063	0.179	1.02
9.4	0.31	0.12	1.5	30	0.078	0.068	0.164	1.00

^aThe rotational correlation time of the whole protein was fixed to 30 ns for better comparison. (The mean ϕ_3 -value from the individual fits is 34±4 ns, the SD is given, n=6.)

Table S3: Time-resolved anisotropy fit results of Cph1-PGP-C371S-AF. r_0 is initial anisotropy and the amplitudes β_1 and β_2 indicate the degree of depolarization of the anisotropy decay components with the correlation times ϕ_1 and ϕ_2 . The reduced χ^2 (χ_{red}^2) is given as a measure of the goodness of the fit. The corresponding fluorescence lifetimes of bound IAF were 0.2 ns, 1.0 ns, and 3.9 ns (pH 8). The fit error is 10%.

pН	r ₀	$\phi_l(ns)$	$\phi_2(\mathrm{ns})$	$\phi_3(\mathrm{ns})^{\mathrm{a}}$	β_1	β2	β ₃	χ red ²
7.0	0.38	0.11	0.9	30	0.176	0.058	0.150	0.99
7.5	0.39	0.10	0.8	30	0.176	0.067	0.149	0.92
8.0	0.39	0.10	0.8	30	0.181	0.067	0.140	0.93
8.5	0.37	0.08	0.7	30	0.178	0.074	0.120	0.95
9.0	0.37	0.11	1.0	30	0.201	0.067	0.110	0.97
9.5	0.28	0.07	1.0	30	0.098	0.070	0.112	1.10

^aThe rotational correlation time of the whole protein was fixed to 30 ns for better comparison. (The mean ϕ_3 -value from the individual fits is 28±3 ns, the SD is given, n=6.)

Table S4: Time-resolved anisotropy fit results of Cph1-PG-AF. r_0 is initial anisotropy and the amplitudes β_1 and β_2 indicate the degree of depolarization of the anisotropy decay components with the correlation times ϕ_1 and ϕ_2 . The reduced χ^2 (χ_{red}^2) is given as a measure of the goodness of the fit. The corresponding fluorescence lifetimes of bound IAF were 0.3 ns, 1.5 ns, and 4.1 ns (pH 7.5). The fit error is 10%.

pН	r ₀	$\phi_l(ns)$	$\phi_2(\mathrm{ns})$	$\phi_3 (\mathrm{ns})^{\mathrm{a}}$	β_1	β2	β3	χ_{red}^2
7.0	0.38	0.03	0.37	15	0.103	0.057	0.220	0.93
7.5	0.34	0.05	0.58	15	0.085	0.054	0.200	1.00
8.2	0.30	0.09	0.60	15	0.075	0.049	0.176	1.01
10	0.30	0.07	0.55	15	0.073	0.051	0.175	1.04

^aThe rotational correlation time of the whole protein was fixed to 15 ns for better comparison. (The mean ϕ_3 -value from individual fits is 15±4 ns, the SD is given, n=4.)