Supporting Information

Air-stable hybrid perovskite solar cell by sequential vapor deposition in a single reactor

Siphelo Ngqoloda,[†] Christopher J. Arendse,^{†,‡,*} Theophillus F. Muller,[†] Paul F. Miceli,^{†,‡} Suchismita Guha,^{†,‡} Louise Mostert,[§] and Clive J. Oliphant^{†,§}

[†] Department of Physics and Astronomy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

[‡] Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA

§ Materials Characterization, National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040, South Africa

Corresponding Author

*E-mail: cjarendse@uwc.ac.za

UV-Vis Transmission Modelling

The transmission spectra were analysed with SCOUT[®] simulation software (<u>https://wtheiss.com</u>), employing an iterative method using Bruggeman Effective Medium Approximation¹ to mix quantities of PbI₂ and MAPbI₃ optical functions, such as the refractive index and extinction coefficient.^{2, 3} The experimental and modelled transmittance spectra of the PbI₂ and converted perovskite films are shown in Figure S2(c), with the fits depicting a good agreement between the experiments and simulations.

References

1. Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, *Ann. Phys.* **1935**, *416*, 636-664.

2. Ahuja, R.; Arwin, H.; Ferreira da Silva, A.; Persson, C.; Osorio-Guillen, J.; Souza de Almeida, J.; Moyses Araujo, C.; Veje, E.; Veissid, N.; An, C.; Pepe, I.; Johansson, B. Electronic and Optical Properties of Lead iodide, *J. Appl. Phys.* **2002**, *92*, 7219.

3. Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S.J.; Yum, J.H.; Topič, M.; De Wolf, S.; Ballif, C. Complex Refractive Index Spectra of CH₃NH₃PbI₃ Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry, *J. Phys. Chem. Lett.* **2015**, *6*, 66-71.

Figure S1: (a) Schematic illustration of the home-built chemical vapour deposition system, (b) photographs of the deposited films with a yellow PbI_2 and the dark perovskites after different conversion times as labelled.

Figure S2: (a) Optical and (b) AFM micrograph of the as-deposited PbI_2 thin film on glass substrate showing high surface coverage and smooth grains. (c) Experimental and simulated transmittance spectra of the PbI_2 and perovskite films.

Figure S3: Scanning electron microscopy micrographs of the perovskite films after different conversion times, (a, b, c, and d) is 15, 30, 60, and 120 minutes, respectively. (e) Cross-sectional SEM micrograph of the 15-minute converted sample, depicting continuous grains across film thickness.

Figure S4: Optical micrographs of the perovskite films after different conversion times, (a) – (e) is 15 minutes – 120 minutes (scale is same in all) and (f - j) is AFM micrographs showing large perovskite grains (scale is same in all).

Figure S5: XPS measurements of the 90 minutes converted perovskite film, (a) XPS full survey, (b) XPS high resolution spectra of Pb(II) $4f_{7/2}$ and $4f_{5/2}$ transitions; (c) XPS high resolution spectra of I $3d_{5/2}$ and $3d_{3/2}$ transitions; (d) Pb/I atomic ratio depth profile; and (e) high resolution spectral depth profile of Pb(II) $4f_{7/2}$ and $4f_{5/2}$ transitions at different sputtering times showing the appearance of the metallic Pb (Pb⁰) peak.

Figure S6: Optical properties of the converted perovskites, (a) absorbance, (b) absorption coefficient, (c) refractive index, and (d) optical band extrapolation.

Figure S7: J-V characteristics measured at different days for (a) reverse and (b) forward scan.

Figure S8: Evolution of (a) open circuit voltage (V_{oc}), (b) short circuit current density (J_{sc}), (c) fill factor (FF) and the (d) power conversion efficiency (PCE) of the device measured for 21 days in reverse and forward scan.