Supporting information

The expression and purification of DGD2 - a chloroplast outer membrane associated glycosyltransferase for galactolipid synthesis

Biao Fu¹*, Christian Brown¹, Lena Mäler^{1,2}*

¹Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden

²Department of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden.

Figure S1. Workflow for DGD2 Δ 401-473 purification. The target protein can be purified from the membrane fraction exclusively or from all fractions. Dashed line indicates alternative workflow steps. The membrane fraction purification yields sample of better purity.

Figure S2. IMAC purification of full length DGD2. Lane 1. Pooled sample after the IMAC step; Lane 2. MW. marker. (Lane 1, 2 are Coomassie stained) Lane 3. In-gel fluorescence image of the lane. Lane 4. Anti-Histag western blot of the lane.

$\begin{array}{l} \mathsf{A} \\ {}_{401}\underline{S}\mathsf{NL}\underline{S}\mathsf{KR}\underline{S}\mathsf{VFA}\underline{SSS}\mathsf{I}\underline{S}\mathsf{V}_{417}\mathsf{G}\mathsf{K}\mathsf{NL}\mathsf{E}\mathsf{D}\mathsf{M}\underline{S}\mathsf{A}\mathsf{Y}\mathsf{I}\mathsf{H}\mathsf{F}\mathsf{L}\mathsf{A}\underline{S}\mathsf{G}\mathsf{F}_{434}\mathsf{E}\mathsf{A} \\ \underline{S}\mathsf{R}\underline{\mathsf{T}}\mathsf{A}\mathsf{F}\mathsf{G}\mathsf{A}\mathsf{I}\mathsf{P}\mathsf{G}\underline{S}\mathsf{L}\mathsf{Q}\mathsf{P}\mathsf{D}\mathsf{E}\mathsf{E}\mathsf{L}\mathsf{C}\mathsf{R}\mathsf{D}\mathsf{L}\mathsf{G}\mathsf{L}\underline{S}\mathsf{L}\mathsf{N}\underline{\mathsf{T}}\mathsf{P}\underline{S}\mathsf{P}\mathsf{N}\underline{\mathsf{T}}\mathsf{R}\mathsf{K}\mathsf{Q}\mathsf{D}_{473} \end{array}$

HeliQuest¹ analysis of fragment $_{417}$ GKNLEDMSAYIHFLASGF $_{434}$ (18 aa) shows amphiphilic propensity with hydrophobicity <H> = 0.48 and hydrophobic moment <µH> = 0.409.

Figure S3. DGD2 C-terminal 73 residues. (A) The sequence is show with Serine and Threonine underlined. (B) HeliQuest¹ scanning of the sequence identified a potential amphiphilic helix fragment.

MATRIX MASCOT Search Results

Protein sequence coverage: 73%

Matched peptides shown in **bold red**.

1	MTNQQEQHIA	IFTTASIPWL	TGTAVNPLFR	AAYLANDGER	RVTLVIPWLT
51	LKHQKLVYPN	SITFSSPSEQ	EAYVRQWLEE	R VSFRLAFEI	RFYPGKFAID
101	KR SILPVGDI	SDAIPDEEAD	IAVLEEPEHL	TWFHHGQK WK	TKFNYVIGIV
151	HTNYLEYVKR	EKQGR VKAFF	LKYLNSWVVG	IYCHK VIR LS	AATQEYPKSI
201	VCNVHGVNPK	FLEIGLRKLE	QQKLQEQPFT	KGAYYIGKMV	WSKGYKELLK
251	LLEKHQK ela	ELEVDLYGDG	EDSEEIKEAA	RKLDLTVNVY	PGRDHADSLF
301	HNYKVFLNPS	TTDVVCTTTA	EALAMGKIVV	CANHISNK FF	KQFPNCR TYD
351	DGQGFVRATL	KALGEQPSQL	TEQQRHELSW	EAATQRFIKV	SDLNRLSRAD*
401	SNLSKRSVFA	SSSISVGKNL	EDMSAYIHFL	ASGFEASRTA	FGAIPGSLQP
451	DEELCRDLGL	SLNTPSPNTR	KQD		

Figure S4. The target recombinant protein band was verified by mass spectrometry based protein sequencing. The protein was digested with trypsin and a MASCOT peptide sequence database search² was used to show that the C-terminal part of DGD2 was truncated as designed. An asterix (*) indicates the site of truncation.

Table S1. List of primers.

Primers	Sequence
	1
dgd2-XhoI	5'-GAGA <u>CTCGAG</u> ATGACGAACCAGCAGGAA-3'
dgd2-BamHI	5'-TATA <u>GGATCC</u> CTTATGCGGAAGTGGCTTATG-3'
dgd2∆1-178-NdeI	5'-AATA <u>CATATG</u> GAAGAACGCGTGTCGTTT-3'
dgd2∆1-178-XhoI	5'-ATAT <u>CTCGAG</u> TTAATCTTGTTTGCGAGTATTCG-3'
dgd2∆401-473-HindIII	5'-ATAT <u>AAGCTT</u> ATCGGCCCGTGACAGGCG-3'
dgd2∆401-473-BamHI	5'-ATAT <u>GGATCC</u> ATCGGCCCGTGACAGGCG-3'

Enzyme restriction sites are underlined.

Table S2. Optimization of DGD2 Δ 401-473 purification. List of buffer conditions that have been tested for the purification.

No.	Buffer composition	IMAC yield/purity	SEC monodispersity
1	50 mM NaOAc pH 5.4	-/-	±
2	50 mM Tris-HCl pH 7.4	±/±	±
3	50 mM HEPES	Ref.	Ref.
4	50 mM HEPES 150 mM NaCl	±/-	-
5	50 mM HEPES + 2 mM DTT	±/±	±
6	50 mM HEPES + 1% Triton X-100	±/-	±
7	50 mM HEPES + 0.5% Triton X-100	±/-	±
8	50 mM HEPES + 50 mM Arg&Glu	/	n/a
9	50 mM HEPES + 1M Urea	±/-	+

10	50 mM HEPES + 0.1 mM DDM	±/±	++
11	50 mM HEPES + 0.05 mM DDM	±/±	±
12	50 mM HEPES + 0.2 mM DDM	±/±	+
13	50 mM HEPES + 10 mM OG	±/-	+
14	50 mM HEPES + 5 mM CHAPS	±/±	+
15	50 mM HEPES +		
	5 mM CHAPS exchanged to 0.1 mM DDM	±/±	+
	during IMAC		
16	50 mM HEPES +		
	5 mM CHAPS exchange to 0.1 mM DDM	±/±	+++
	during sample concentration		
17	50 mM HEPES +		
	5 mM CHAPS exchange to 0.1 mM DDM	±/±	±
	during SEC		

Unless indicated otherwise, the buffers also include 500 mM NaCl, 10% glycerol and pH is 7.4. TCEP is always added into the buffers to 1 mM after the IMAC purification. The tested buffers are compared to buffer No. 3 as a reference. +/++/+++ indicate result improved, -/--/-- worsened, \pm unchanged, n/a not available. The best condition is highlighted in bold.

Supporting references

1 Gautier, R., Douguet, D., Antonny, B., and Drin, G. (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. *Bioinformatics* 24, 2101–2.

2 Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis 20*, 3551-67.